These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10829739)

  • 1. Ultrasound conditioning of suspensions--studies of streaming influence on particle aggregation on a lab- and pilot-plant scale.
    Spengler J; Jekel M
    Ultrasonics; 2000 Mar; 38(1-8):624-8. PubMed ID: 10829739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.
    Kuznetsova LA; Martin SP; Coakley WT
    Biosens Bioelectron; 2005 Dec; 21(6):940-8. PubMed ID: 16257663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field.
    Spengler JF; Jekel M; Christensen KT; Adrian RJ; Hawkes JJ; Coakley WT
    Bioseparation; 2000; 9(6):329-41. PubMed ID: 11518236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of suspensions and emulsions via ultrasonic standing waves - a review.
    Trujillo FJ; Juliano P; Barbosa-Cánovas G; Knoerzer K
    Ultrason Sonochem; 2014 Nov; 21(6):2151-64. PubMed ID: 24629579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.
    Bazou D; Kuznetsova LA; Coakley WT
    Ultrasound Med Biol; 2005 Mar; 31(3):423-30. PubMed ID: 15749566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic Streaming in a Soft Tissue Microenvironment.
    El Ghamrawy A; de Comtes F; Koruk H; Mohammed A; Jones JR; Choi JJ
    Ultrasound Med Biol; 2019 Jan; 45(1):208-217. PubMed ID: 30336964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing.
    Ang KM; Yeo LY; Hung YM; Tan MK
    Biomicrofluidics; 2016 Sep; 10(5):054106. PubMed ID: 27703592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of ultrasound streaming and radiation force in biosensors.
    Kuznetsova LA; Coakley WT
    Biosens Bioelectron; 2007 Mar; 22(8):1567-77. PubMed ID: 16979887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instabilities in the Rayleigh-Bénard-Eckart problem.
    Ben Hadid H; Dridi W; Botton V; Moudjed B; Henry D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016312. PubMed ID: 23005530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic streaming induced by MHz-frequency ultrasound extends the volume limit of cell suspension culture.
    Oyama T; Imashiro C; Kuriyama T; Usui H; Ando K; Azuma T; Morikawa A; Kodeki K; Takahara O; Takemura K
    J Acoust Soc Am; 2021 Jun; 149(6):4180. PubMed ID: 34241472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the acoustic streaming by pulsed ultrasounds.
    Hoyos M; Castro A
    Ultrasonics; 2013 Jan; 53(1):70-6. PubMed ID: 22560802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.