These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10829740)

  • 1. Viability of plant cell suspensions exposed to homogeneous ultrasonic fields of different energy density and wave type.
    Böhm H; Anthony P; Davey MR; Briarty LG; Power JB; Lowe KC; Benes E; Gröschl M
    Ultrasonics; 2000 Mar; 38(1-8):629-32. PubMed ID: 10829740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves.
    Radel S; McLoughlin AJ; Gherardini L; Doblhoff-Dier O; Benes E
    Ultrasonics; 2000 Mar; 38(1-8):633-7. PubMed ID: 10829741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-induced physiological changes in cultured cells of Petunia hybrida.
    Böhm H; Anthony P; Garratt LC; Briarty LG; Lowe KC; Power JB; Benes E; Davey MR
    Artif Cells Blood Substit Immobil Biotechnol; 2002 Mar; 30(2):127-36. PubMed ID: 12027228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clarification of small volume microbial suspensions in an ultrasonic standing wave.
    Limaye MS; Coakley WT
    J Appl Microbiol; 1998 Jun; 84(6):1035-42. PubMed ID: 9717288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.
    Bazou D; Kuznetsova LA; Coakley WT
    Ultrasound Med Biol; 2005 Mar; 31(3):423-30. PubMed ID: 15749566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrast agent bubble and erythrocyte behavior in a 1.5-MHz standing ultrasound wave.
    Khanna S; Amso NN; Paynter SJ; Coakley WT
    Ultrasound Med Biol; 2003 Oct; 29(10):1463-70. PubMed ID: 14597343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip.
    Hultström J; Manneberg O; Dopf K; Hertz HM; Brismar H; Wiklund M
    Ultrasound Med Biol; 2007 Jan; 33(1):145-51. PubMed ID: 17189057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein synthesis stimulated in sonicated sugar beet cells and protoplasts.
    Joersbo M; Brunstedt J
    Ultrasound Med Biol; 1990; 16(7):719-24. PubMed ID: 2281560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of in vitro toxicant sensors in an ultrasonic standing wave.
    Morgan J; Spengler JF; Kuznetsova L; Coakley WT; Xu J; Purcell WM
    Toxicol In Vitro; 2004 Feb; 18(1):115-20. PubMed ID: 14630069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip.
    Ohlin M; Iranmanesh I; Christakou AE; Wiklund M
    Lab Chip; 2015 Aug; 15(16):3341-9. PubMed ID: 26156858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescein isothiocynate-dextran uptake by chinese hamster ovary cells in a 1.5 MHz ultrasonic standing wave in the presence of contrast agent.
    Khanna S; Hudson B; Pepper CJ; Amso NN; Coakley WT
    Ultrasound Med Biol; 2006 Feb; 32(2):289-95. PubMed ID: 16464674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical scale ultrasonic standing wave manipulation of cells and microparticles.
    Coakley WT; Hawkes JJ; Sobanski MA; Cousins CM; Spengler J
    Ultrasonics; 2000 Mar; 38(1-8):638-41. PubMed ID: 10829742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves.
    Gherardini L; Cousins CM; Hawkes JJ; Spengler J; Radel S; Lawler H; Devcic-Kuhar B; Gröschl M; Coakley WT; McLoughlin AJ
    Ultrasound Med Biol; 2005 Feb; 31(2):261-72. PubMed ID: 15708466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakdown of immobilisation/separation and morphology changes of yeast suspended in water-rich ethanol mixtures exposed to ultrasonic plane standing waves.
    Radel S; Gherardini L; McLoughlin AJ; Doblhoff-Dier O; Benes E
    Bioseparation; 2000; 9(6):369-77. PubMed ID: 11518240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonviral transfection of suspension cells in ultrasound standing wave fields.
    Lee YH; Peng CA
    Ultrasound Med Biol; 2007 May; 33(5):734-42. PubMed ID: 17383802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability.
    Qin P; Xu L; Zhong W; Yu AC
    Ultrasound Med Biol; 2012 Jun; 38(6):1085-96. PubMed ID: 22502880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonoporation of cultured cells in the rotating tube exposure system.
    Miller DL; Bao S; Morris JE
    Ultrasound Med Biol; 1999 Jan; 25(1):143-9. PubMed ID: 10048811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell inactivation by ultrasound.
    Dakubu S
    Biotechnol Bioeng; 1976 Apr; 18(4):465-71. PubMed ID: 773447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films.
    Csiszar E; Kalic P; Kobol A; Ferreira Ede P
    Ultrason Sonochem; 2016 Jul; 31():473-80. PubMed ID: 26964974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.