These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10829741)

  • 1. Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves.
    Radel S; McLoughlin AJ; Gherardini L; Doblhoff-Dier O; Benes E
    Ultrasonics; 2000 Mar; 38(1-8):633-7. PubMed ID: 10829741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakdown of immobilisation/separation and morphology changes of yeast suspended in water-rich ethanol mixtures exposed to ultrasonic plane standing waves.
    Radel S; Gherardini L; McLoughlin AJ; Doblhoff-Dier O; Benes E
    Bioseparation; 2000; 9(6):369-77. PubMed ID: 11518240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viability of plant cell suspensions exposed to homogeneous ultrasonic fields of different energy density and wave type.
    Böhm H; Anthony P; Davey MR; Briarty LG; Power JB; Lowe KC; Benes E; Gröschl M
    Ultrasonics; 2000 Mar; 38(1-8):629-32. PubMed ID: 10829740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the spatial organisation of microbial cells in a gel matrix subjected to treatment with ultrasound standing waves.
    Gherardini L; Radel S; Sielemann S; Doblhoff-Dier O; Gröschl M; Benes E; McLoughlin AJ
    Bioseparation; 2001; 10(4-5):153-62. PubMed ID: 12233739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clarification of small volume microbial suspensions in an ultrasonic standing wave.
    Limaye MS; Coakley WT
    J Appl Microbiol; 1998 Jun; 84(6):1035-42. PubMed ID: 9717288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves.
    Gherardini L; Cousins CM; Hawkes JJ; Spengler J; Radel S; Lawler H; Devcic-Kuhar B; Gröschl M; Coakley WT; McLoughlin AJ
    Ultrasound Med Biol; 2005 Feb; 31(2):261-72. PubMed ID: 15708466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field.
    Spengler JF; Jekel M; Christensen KT; Adrian RJ; Hawkes JJ; Coakley WT
    Bioseparation; 2000; 9(6):329-41. PubMed ID: 11518236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip.
    Hultström J; Manneberg O; Dopf K; Hertz HM; Brismar H; Wiklund M
    Ultrasound Med Biol; 2007 Jan; 33(1):145-51. PubMed ID: 17189057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonviral transfection of suspension cells in ultrasound standing wave fields.
    Lee YH; Peng CA
    Ultrasound Med Biol; 2007 May; 33(5):734-42. PubMed ID: 17383802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtration of bacteria and yeast by ultrasound-enhanced sedimentation.
    Hawkes JJ; Limaye MS; Coakley WT
    J Appl Microbiol; 1997 Jan; 82(1):39-47. PubMed ID: 9113876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical scale ultrasonic standing wave manipulation of cells and microparticles.
    Coakley WT; Hawkes JJ; Sobanski MA; Cousins CM; Spengler J
    Ultrasonics; 2000 Mar; 38(1-8):638-41. PubMed ID: 10829742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microparticle manipulation in millimetre scale ultrasonic standing wave chambers.
    Hawkes JJ; Barrow D; Coakley WT
    Ultrasonics; 1998 Aug; 36(9):925-31. PubMed ID: 9735860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation.
    Tsukamoto I; Yim B; Stavarache CE; Furuta M; Hashiba K; Maeda Y
    Ultrason Sonochem; 2004 Apr; 11(2):61-5. PubMed ID: 15030781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Invasive Characterization of Different
    Geier D; Mailänder M; Whitehead I; Becker T
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of enhancement of two processes, sedimentation and conjugation, when bacteria are concentrated in ultrasonic standing waves.
    Cousins CM; Melin JR; Venables WA; Coakley WT
    Bioseparation; 2000; 9(6):343-9. PubMed ID: 11518237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems.
    Devendran C; Albrecht T; Brenker J; Alan T; Neild A
    Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.
    Elvira L; Vera P; Cañadas FJ; Shukla SK; Montero F
    Ultrasonics; 2016 Jan; 64():151-61. PubMed ID: 26361271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of ultrasonic standing wave in biological studies and cell technologies.
    Pashovkin TN; Sadikova DG; Pashovkina MS; Shil'nikov GV
    Bull Exp Biol Med; 2007 Jul; 144(1):118-22. PubMed ID: 18256768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic manipulation of yeast cells in suspension for absorption spectroscopy with an immersible mid-infrared fiberoptic probe.
    Koch C; Brandstetter M; Lendl B; Radel S
    Ultrasound Med Biol; 2013 Jun; 39(6):1094-101. PubMed ID: 23562020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.