These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10829745)

  • 1. The use of ultrasonic standing waves to enhance optical particle sizing equipment.
    Holwill IL
    Ultrasonics; 2000 Mar; 38(1-8):650-3. PubMed ID: 10829745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidics 15: streaming with sound waves interacting with solid particles.
    Sadhal SS
    Lab Chip; 2012 Aug; 12(15):2600-11. PubMed ID: 22744212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves.
    Chen Y; Ni C; Xie G; Liu Q
    Ultrason Sonochem; 2020 Jun; 64():105003. PubMed ID: 32062535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Hammarström B; Wiklund M
    J Acoust Soc Am; 2019 Jun; 145(6):3311. PubMed ID: 31255151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems.
    Devendran C; Albrecht T; Brenker J; Alan T; Neild A
    Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The directional sensitivity of the acoustic radiation force to particle diameter.
    Ran W; Saylor JR
    J Acoust Soc Am; 2015 Jun; 137(6):3288-98. PubMed ID: 26093419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic particle size fractionation in a moving air stream.
    Budwig RS; Anderson MJ; Putnam G; Manning C
    Ultrasonics; 2010 Jan; 50(1):26-31. PubMed ID: 19682719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles.
    Shields CW; Cruz DF; Ohiri KA; Yellen BB; Lopez GP
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27022681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outer Acoustic Streaming Flow Driven by Asymmetric Acoustic Resonances.
    Lei J; Zheng G; Yao Z; Huang Z
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation.
    Zhao L; Niu P; Casals E; Zeng M; Wu C; Yang Y; Sun S; Zheng Z; Wang Z; Ning Y; Duan X; Pang W
    Lab Chip; 2021 Feb; 21(4):660-667. PubMed ID: 33393566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscous torque on spherical micro particles in two orthogonal acoustic standing wave fields.
    Lamprecht A; Schwarz T; Wang J; Dual J
    J Acoust Soc Am; 2015 Jul; 138(1):23-32. PubMed ID: 26233003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of two-dimensional acoustic resonant modes in a particle separator.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2006 Dec; 44 Suppl 1():e467-71. PubMed ID: 16782151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators.
    Hill M
    J Acoust Soc Am; 2003 Nov; 114(5):2654-61. PubMed ID: 14650002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.