These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10829752)

  • 1. Estimation of the blood Doppler frequency shift by a time-varying parametric approach.
    Girault JM; Kouamé D; Ouahabi A; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):682-7. PubMed ID: 10829752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.
    Herment A; Giovannelli JF
    Ultrason Imaging; 1995 Jan; 17(1):1-26. PubMed ID: 7638930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach for Doppler blood flow measurement.
    McNamara DM; Goli A; Ziarani AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1883-5. PubMed ID: 19163056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the spectral broadening of simulated Doppler signals using FFT and AR modelling.
    Keeton PI; Schlindwein FS; Evans DH
    Ultrasound Med Biol; 1997; 23(7):1033-45. PubMed ID: 9330447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive SVD-based AR model order determination for time-frequency analysis of Doppler ultrasound signals.
    Fort A; Manfredi C; Rocchi S
    Ultrasound Med Biol; 1995; 21(6):793-805. PubMed ID: 8571467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of short-time spectral parametric methods for reducing the variance of the Doppler ultrasound mean instantaneous frequency estimation.
    Sava H; Durand LG; Cloutier G
    Med Biol Eng Comput; 1999 May; 37(3):291-7. PubMed ID: 10505377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doppler angle estimation using AR modeling.
    Yeh CK; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):683-92. PubMed ID: 12075962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of stenosis and occlusion in arteries with the application of FFT, AR, and ARMA methods.
    Ubeyli ED; Güler I
    J Med Syst; 2003 Apr; 27(2):105-20. PubMed ID: 12617353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multigate doppler signal analysis using 3-D regularized long AR modelling.
    Berthomier C; Herment A; Giovannelli JF; Guidi G; Pourcelot L; Diebold B
    Ultrasound Med Biol; 2001 Nov; 27(11):1515-23. PubMed ID: 11750751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doppler angle estimation of pulsatile flows using AR modeling.
    Yeh CK; Li PC
    Ultrason Imaging; 2002 Apr; 24(2):65-80. PubMed ID: 12199419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.
    Solano González J; Rodríguez Vázquez K; García Nocetti DF
    Artif Intell Med; 2000 May; 19(1):75-89. PubMed ID: 10767617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of lower limb arterial stenoses from Doppler blood flow signal analysis with time-frequency representation and pattern recognition techniques.
    Guo Z; Durand LG; Allard L; Cloutier G; Lee HC
    Ultrasound Med Biol; 1994; 20(4):335-46. PubMed ID: 8085290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Doppler signal analysis techniques for velocity waveform, turbulence and vortex measurement: a simulation study.
    Wang Y; Fish PJ
    Ultrasound Med Biol; 1996; 22(5):635-49. PubMed ID: 8865559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part I: Nonstationary methods.
    Kouamé D; Girault JM; Patat F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):257-66. PubMed ID: 12699159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study and assessment of Doppler ultrasound spectral estimation techniques. Part II: Methods and results.
    Vaitkus PJ; Cobbold RS; Johnston KW
    Ultrasound Med Biol; 1988; 14(8):673-88. PubMed ID: 3062863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part II: Multiplephase pipe-flow velocity measurement.
    Kouamé D; Girault JM; Remenieras JP; Chemla JP; Lethiecq M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):267-78. PubMed ID: 12699160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):293-306. PubMed ID: 15121001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction for broadening in Doppler blood flow spectrum estimated using wavelet transform.
    Zhang Y; Xu L; Chen J; Ma H; Shi X
    Med Eng Phys; 2006 Jul; 28(6):596-603. PubMed ID: 16256404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.
    Kathpalia A; Karabiyik Y; Eik-Nes SH; Tegnander E; Ekroll IK; Kiss G; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1825-1838. PubMed ID: 27824563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.