These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10829772)

  • 1. Characterization of airborne transducers by optical tomography.
    Bou Matar O ; Pizarro L; Certon D; Remenieras JP; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):787-93. PubMed ID: 10829772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal.
    Acquafresca A; Biagi E; Masotti L; Menichelli D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical heterodyne detection of pulsed ultrasonic pressures.
    Jia X; Quentin G; Lassoued M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(1):67-9. PubMed ID: 18263158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of ultrasonic fields with optical diffraction tomography.
    Holm A; Persson HW; Lindström K
    Ultrasound Med Biol; 1991; 17(5):505-12. PubMed ID: 1962353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New symmetric reflector ultrasonic transducers (SRUT).
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2311-9. PubMed ID: 19942517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive field measurement of low-frequency ultrasonic transducers operating in sealed vessels.
    Harvey G; Gachagan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1749-58. PubMed ID: 17036784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of focused ultrasonic fields using a scanning laser vibrometer.
    Wang Y; Tyrer J; Zhihong P; Shiquan W
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2621-7. PubMed ID: 17550161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical optoacoustic microscopy based on probe beam deflection technique.
    Maswadi SM; Ibey BL; Roth CC; Tsyboulski DA; Beier HT; Glickman RD; Oraevsky AA
    Photoacoustics; 2016 Sep; 4(3):91-101. PubMed ID: 27761408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor.
    Zhang E; Beard P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jul; 53(7):1330-8. PubMed ID: 16889340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.
    Wang T; Zhang C; Aleksov A; Salama I; Kar A
    Ultrasonics; 2017 Apr; 76():35-43. PubMed ID: 28040628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound pressure distributions generated by high frequency transducers in large reactors.
    Leong T; Coventry M; Swiergon P; Knoerzer K; Juliano P
    Ultrason Sonochem; 2015 Nov; 27():22-29. PubMed ID: 26186816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A micromachined efficient parametric array loudspeaker with a wide radiation frequency band.
    Je Y; Lee H; Been K; Moon W
    J Acoust Soc Am; 2015 Apr; 137(4):1732-43. PubMed ID: 25920826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring a photo-acousto-optic effect for noncontacting photoacoustic sensing.
    Yang BW; Chen HY; Huang YS; Chen HW; Yu HY; Yeh DC
    Appl Opt; 2014 Aug; 53(22):E47-50. PubMed ID: 25090353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beam profile measurements and simulations for ultrasonic transducers operating in air.
    Benny G; Hayward G; Chapman R
    J Acoust Soc Am; 2000 Apr; 107(4):2089-100. PubMed ID: 10790035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acousto-optic holography.
    Verburg SA; Williams EG; Fernandez-Grande E
    J Acoust Soc Am; 2022 Dec; 152(6):3790. PubMed ID: 36586838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bench testing of a heterodyne CO
    Akiyama T; Van Zeeland MA; Boivin RL; Carlstrom TN; Chavez JA; Muscatello CM; O'Neill RC; Vasquez J; Watkins M; Martin W; Colio A; Finkenthal DK; Brower DL; Chen J; Ding WX; Perry M
    Rev Sci Instrum; 2016 Dec; 87(12):123502. PubMed ID: 28040946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic imaging in air using fan-beam tomography and electrostatic transducers.
    Ingleby P; Wright WM
    Ultrasonics; 2002 May; 40(1-8):507-11. PubMed ID: 12159992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation.
    Foote KG; Theobald PD
    J Acoust Soc Am; 2015 Sep; 138(3):1627-36. PubMed ID: 26428801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.