These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10830362)

  • 1. Mass, momentum, and energy transfer by the propagation of acoustic solitary waves.
    Sugimoto N
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2398-405. PubMed ID: 10830362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave propagation in a duct with a periodic Helmholtz resonators array.
    Wang X; Mak CM
    J Acoust Soc Am; 2012 Feb; 131(2):1172-82. PubMed ID: 22352492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)].
    Marston PL
    J Acoust Soc Am; 2014 Mar; 135(3):1031-3. PubMed ID: 24606246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic wave propagation in gassy porous marine sediments: The rheological and the elastic effects.
    Dogan H; White PR; Leighton TG
    J Acoust Soc Am; 2017 Mar; 141(3):2277. PubMed ID: 28372087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic energy and momentum in a moving medium.
    Stone M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1341-50. PubMed ID: 11088593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission and reflection of strongly nonlinear solitary waves at granular interfaces.
    Tichler AM; Gómez LR; Upadhyaya N; Campman X; Nesterenko VF; Vitelli V
    Phys Rev Lett; 2013 Jul; 111(4):048001. PubMed ID: 23931408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy, momentum, and angular momentum of sound pulses.
    Lekner J
    J Acoust Soc Am; 2017 Dec; 142(6):3428. PubMed ID: 29289070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction.
    Oba R; Finette S
    J Acoust Soc Am; 2002 Feb; 111(2):769-84. PubMed ID: 11863179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.
    Luo J; Badiey M; Karjadi EA; Katsnelson B; Tskhoidze A; Lynch JF; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic field variability induced by time evolving internal wave fields.
    Finette S; Orr MH; Turgut A; Apel JR; Badiey M; Chiu CS; Headrick RH; Kemp JN; Lynch JF; Newhall AE; von der Heydt K ; Pasewark B; Wolf SN; Tielbuerger D
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):957-72. PubMed ID: 11008800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "The directionality of acoustic T-phase signals from small magnitude submarine earthquakes" [J. Acoust. Soc. Am. 119, 3669-3675 (2006)].
    Bohnenstiehl DR
    J Acoust Soc Am; 2007 Mar; 121(3):1293-6; discussion 1297-8. PubMed ID: 17407863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solitary and periodic waves in collisionless plasmas: The Adlam-Allen model revisited.
    Allen JE; Frantzeskakis DJ; Karachalios NI; Kevrekidis PG; Koukouloyannis V
    Phys Rev E; 2020 Jul; 102(1-1):013209. PubMed ID: 32794914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled Helmholtz equations: Chirped solitary waves.
    Saha N; Roy B; Khare A
    Chaos; 2021 Nov; 31(11):113104. PubMed ID: 34881603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivalence between angular spectrum-based and multipole expansion-based formulas of the acoustic radiation force and torque.
    Gong Z; Baudoin M
    J Acoust Soc Am; 2021 May; 149(5):3469. PubMed ID: 34241130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solitary wave complexes in two-component condensates.
    Berloff NG
    Phys Rev Lett; 2005 Apr; 94(12):120401. PubMed ID: 15903897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wide angle and high Mach number parabolic equation.
    Lingevitch JF; Collins MD; Dacol DK; Drob DP; Rogers JC; Siegmann WL
    J Acoust Soc Am; 2002 Feb; 111(2):729-34. PubMed ID: 11865817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface wave conversion analysis on a lengthwise soldered circular cylindrical shell.
    Baillard A; Chiumia J; Décultot D; Maze G; Klauson A; Metsaveer J
    J Acoust Soc Am; 2008 Oct; 124(4):2061-7. PubMed ID: 19062846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).
    Prieur F; Vilenskiy G; Holm S
    J Acoust Soc Am; 2012 Oct; 132(4):2169-72. PubMed ID: 23039412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High frequency normal mode statistics in a shallow water waveguide: the effect of random linear internal waves.
    Raghukumar K; Colosi JA
    J Acoust Soc Am; 2014 Jul; 136(1):66-79. PubMed ID: 24993196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.