These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10830379)

  • 1. Inverse problem solution techniques as applied to indirect in situ estimation of fish target strength.
    Stepnowski A; Moszyński M
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2554-62. PubMed ID: 10830379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing individual fish behavior in fish aggregations: tracking in dense fish aggregations using a split-beam echosounder.
    Handegard NO
    J Acoust Soc Am; 2007 Jul; 122(1):177-87. PubMed ID: 17614477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment.
    Holmin AJ; Handegard NO; Korneliussen RJ; Tjøstheim D
    J Acoust Soc Am; 2012 Dec; 132(6):3720-34. PubMed ID: 23231103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of mesopelagic organism abundance estimates using in situ target strength measurements and echo-counting techniques.
    Cotter E; Bassett C; Lavery A
    JASA Express Lett; 2021 Apr; 1(4):040801. PubMed ID: 36154197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic density estimation of dense fish shoals.
    Tallon B; Roux P; Matte G; Guillard J; Skipetrov SE
    J Acoust Soc Am; 2020 Sep; 148(3):EL234. PubMed ID: 33003841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.
    Chu D; Lawson GL; Wiebe PH
    J Acoust Soc Am; 2016 May; 139(5):2885. PubMed ID: 27250181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Scientific Fishery Biomass Estimator: System Design and Prototyping.
    Sthapit P; Kim M; Kang D; Kim K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic flow perception in cf-bats: extraction of parameters.
    Müller R; Schnitzler HU
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1298-307. PubMed ID: 11008830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic remote sensing of swimbladder orientation and species mix in the oreo population on the Chatham Rise.
    Coombs RF; Barr R
    J Acoust Soc Am; 2004 Apr; 115(4):1516-24. PubMed ID: 15101629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking individual fish from a moving platform using a split-beam transducer.
    Handegard NO; Patel R; Hjellvik V
    J Acoust Soc Am; 2005 Oct; 118(4):2210-23. PubMed ID: 16266143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target Strength and swimbladder morphology of Mueller's pearlside (Maurolicus muelleri).
    Sobradillo B; Boyra G; Martinez U; Carrera P; Peña M; Irigoien X
    Sci Rep; 2019 Nov; 9(1):17311. PubMed ID: 31754163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the temporal structure of fish echoes using the dolphin broadband sonar signal.
    Matsuo I; Imaizumi T; Akamatsu T; Furusawa M; Nishimori Y
    J Acoust Soc Am; 2009 Jul; 126(1):444-50. PubMed ID: 19603901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic backscattering by Hawaiian lutjanid snappers. II. Broadband temporal and spectral structure.
    Au WW; Benoit-Bird KJ
    J Acoust Soc Am; 2003 Nov; 114(5):2767-74. PubMed ID: 14650011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation.
    Kuc R
    J Acoust Soc Am; 2010 Nov; 128(5):3190-9. PubMed ID: 21110614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phantom echo generation: a new technique for investigating dolphin echolocation.
    Aubauer R; Au WW
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1165-70. PubMed ID: 9745731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the target strength spectra of fish using dolphin-like short broadband sonar signals.
    Imaizumi T; Furusawa M; Akamatsu T; Nishimori Y
    J Acoust Soc Am; 2008 Dec; 124(6):3440-9. PubMed ID: 19206773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recreational Fish-Finders--An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey.
    McInnes AM; Khoosal A; Murrell B; Merkle D; Lacerda M; Nyengera R; Coetzee JC; Edwards LC; Ryan PG; Rademan J; van der Westhuizen JJ; Pichegru L
    PLoS One; 2015; 10(11):e0140936. PubMed ID: 26600300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroacoustic estimation of fish biomass in the Gulf of Nicoya, Costa Rica.
    Hedgepeth J; Gallucci VF; Campos J; Mug M
    Rev Biol Trop; 2000; 48(2-3):371-87. PubMed ID: 11354945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foliage echoes: a probe into the ecological acoustics of bat echolocation.
    Müller R; Kuc R
    J Acoust Soc Am; 2000 Aug; 108(2):836-45. PubMed ID: 10955651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises.
    Au WW; Branstetter BK; Benoit-Bird KJ; Kastelein RA
    J Acoust Soc Am; 2009 Jul; 126(1):460-7. PubMed ID: 19603903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.