BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10830842)

  • 21. Experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations.
    Jordan F; Nemeria NS
    Bioorg Chem; 2005 Jun; 33(3):190-215. PubMed ID: 15888311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.
    Kowalska E; Kozik A
    Cell Mol Biol Lett; 2008; 13(2):271-82. PubMed ID: 18161008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate.
    Cernak P; Sen D
    Nat Chem; 2013 Nov; 5(11):971-7. PubMed ID: 24153377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiamin Metabolism in the rat during long-term alcohol administration. 1. Communication: ethanol induced changes at optimal thiamin supply.
    Bitsch R; Hansen J; Hötzel D
    Int J Vitam Nutr Res; 1982; 52(2):126-33. PubMed ID: 6890048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remarkable stabilization of zwitterionic intermediates may account for a billion-fold rate acceleration by thiamin diphosphate-dependent decarboxylases.
    Jordan F; Li H; Brown A
    Biochemistry; 1999 May; 38(20):6369-73. PubMed ID: 10350453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid-state NMR and density functional theory studies of ionization states of thiamin.
    Paramasivam S; Balakrishnan A; Dmitrenko O; Godert A; Begley TP; Jordan F; Polenova T
    J Phys Chem B; 2011 Feb; 115(4):730-6. PubMed ID: 21175136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural similarities between thiamin-binding protein and thiaminase-I suggest a common ancestor.
    Soriano EV; Rajashankar KR; Hanes JW; Bale S; Begley TP; Ealick SE
    Biochemistry; 2008 Feb; 47(5):1346-57. PubMed ID: 18177053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies.
    Patel H; Nemeria NS; Andrews FH; McLeish MJ; Jordan F
    Biochemistry; 2014 Apr; 53(13):2145-52. PubMed ID: 24628377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed-phase high-performance liquid chromatographic method.
    Bettendorff L; Peeters M; Jouan C; Wins P; Schoffeniels E
    Anal Biochem; 1991 Oct; 198(1):52-9. PubMed ID: 1789432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The coenzyme thiamine pyrophosphate inhibits the self-splicing of the group I intron.
    Ahn SJ; Park IK
    Int J Biochem Cell Biol; 2003 Feb; 35(2):157-67. PubMed ID: 12479866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intestinal alkaline phosphatase can transphosphorylate thiamin to thiamin monophosphate during intestinal transport in the rat.
    Rindi G; Ricci V; Gastaldi G; Patrini C
    Arch Physiol Biochem; 1995 Apr; 103(1):33-8. PubMed ID: 8574774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.
    Bunik VI; Tylicki A; Lukashev NV
    FEBS J; 2013 Dec; 280(24):6412-42. PubMed ID: 24004353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants.
    Chung YH; Chen TC; Yang WJ; Chen SZ; Chang JM; Hsieh WY; Hsieh MH
    Plant J; 2024 Mar; 117(5):1330-1343. PubMed ID: 37996996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Relative reactivity of thiamine monophosphate and thiamine diphosphate upon interaction with alkaline phosphatase].
    Vovk AI; Babiĭ LV; Murav'eva IV
    Ukr Biokhim Zh (1999); 2002; 74(1):93-6. PubMed ID: 12199107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New perspectives on thiamine catalysis: from enzymic to biomimetic catalysis.
    Stamatis A; Malandrinos G; Louloudi M; Hadjiliadis N
    Bioinorg Chem Appl; 2007; 2007():23286. PubMed ID: 17710108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer's disease.
    Mastrogiacoma F; Bettendorff L; Grisar T; Kish SJ
    Ann Neurol; 1996 May; 39(5):585-91. PubMed ID: 8619543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fragmentation of the conjugate base of 2-(1-hydroxybenzyl)thiamin: does benzoylformate decarboxylase prevent orbital overlap to avoid it?
    Hu Q; Kluger R
    J Am Chem Soc; 2004 Jan; 126(1):68-9. PubMed ID: 14709063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.