These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10830895)

  • 41. Bacillus thuringiensis improved isolation methodology from soil samples.
    Santana MA; Moccia-V CC; Gillis AE
    J Microbiol Methods; 2008 Oct; 75(2):357-8. PubMed ID: 18619500
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of Bacillus thuringiensis isolates with potential for control of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae).
    Santos FP; Lopes J; Vilas-Bôas GT; Zequi JA
    Acta Trop; 2012 Apr; 122(1):64-70. PubMed ID: 22178674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution and characterization of Bacillus thuringiensis in the environment of the olive in Greece.
    Aptosoglou SG; Sivropoulou A; Koliais SI
    New Microbiol; 1997 Jan; 20(1):69-76. PubMed ID: 9037671
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Entomopathogenic activities of environmental isolates of Bacillus thuringiensis against dipteran larvae.
    Lonc E; Doroszkiewicz W; Klowden MJ; Rydzanicz K; Galgan A
    J Vector Ecol; 2001 Jun; 26(1):15-20. PubMed ID: 11469180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Studies on the ecological distribution of Bacillus thuringiensis in forest soils of China].
    Dai L; Wang X; Yang G; Zhang W
    Wei Sheng Wu Xue Bao; 1994 Dec; 34(6):449-56. PubMed ID: 7879387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacillus thuringiensis: a common member of microflora in activated sludges of a sewage treatment plant.
    Mizuki E; Maeda M; Tanaka R; Lee DW; Hara M; Akao T; Yamashita S; Kim HS; Ichimatsu T; Ohba M
    Curr Microbiol; 2001 Jun; 42(6):422-5. PubMed ID: 11381335
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation of mosquito-toxic bacteria from mosquito-breeding sites in Kenya.
    Asimeng EJ; Mutinga MJ
    J Am Mosq Control Assoc; 1992 Mar; 8(1):86-8. PubMed ID: 1583497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biological, immunological, and genetic analysis of Bacillus thuringiensis isolated from granary in Korea.
    Kim HS; Lee DW; Woo SD; Yu YM; Kang SK
    Curr Microbiol; 1998 Jul; 37(1):52-7. PubMed ID: 9625790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenotypic and genotypic features of new autoagglutinating Bacillus thuringiensis strains.
    Chaves JQ; Cavados CF; Rabinovitch L
    J Invertebr Pathol; 2008 May; 98(1):85-92. PubMed ID: 18304571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of Bacillus thuringiensis ser. jordanica (serotype H71), a novel serovariety isolated in Jordan.
    Khyami-Horani H; Hajaij M; Charles JF
    Curr Microbiol; 2003 Jul; 47(1):26-31. PubMed ID: 12783189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis.
    Garcia-Ramon DC; Molina CA; Osuna A; Vílchez S
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3637-54. PubMed ID: 26782747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Larvicidal toxicity and parasporal inclusion of native
    Salamun ; Fatimah ; Fauzi A; Praduwana SN; Ni'matuzahroh
    J Basic Clin Physiol Pharmacol; 2021 Jun; 32(4):379-384. PubMed ID: 34214353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence of Bacillus thuringiensis intra-serovar diversity revealed by Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR genomic fingerprinting.
    Sauka DH; Basile JI; Benintende G
    J Mol Microbiol Biotechnol; 2011; 21(3-4):184-90. PubMed ID: 22286045
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of Bacillus thuringiensis strains from olive-related habitats in Turkey.
    Cinar C; Apaydin O; Yenidunya AF; Harsa S; Gunes H
    J Appl Microbiol; 2008 Feb; 104(2):515-25. PubMed ID: 17927757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Distribution of Bacillus thuringiensis in soils of north and south of China].
    Dai S; Gao M; Li X; Li R
    Wei Sheng Wu Xue Bao; 1996 Aug; 36(4):295-302. PubMed ID: 9639831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacillus thuringiensis serovar mogi (flagellar serotype 3a3b3d), a novel serogroup with a mosquitocidal activity.
    Roh JY; Liu Q; Lee DW; Tao X; Wang Y; Shim HJ; Choi JY; Seo JB; Ohba M; Mizuki E; Je YH
    J Invertebr Pathol; 2009 Nov; 102(3):266-8. PubMed ID: 19703461
    [TBL] [Abstract][Full Text] [Related]  

  • 57. delta-Endotoxin proteins associated with spherical parasporal inclusions of the four Lepidoptera-specific Bacillus thuringiensis strains.
    Wasano N; Kim KH; Ohba M
    J Appl Microbiol; 1998 Apr; 84(4):501-8. PubMed ID: 9633648
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Larvicidal activity of Bacillus thuringiensis natural isolates; indigenous to Japan, against two nematoceran insect pests occurring in urban sewage environments.
    Saitoh H; Higuchi K; Mizuki E; Ohba M
    Microbiol Res; 1996 Aug; 151(3):263-71. PubMed ID: 8817917
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High prevalence of bacterial spore-formers active against mosquito larvae in temporary monsoon flooded sites in Orissa, India.
    Rout R; Raina V; Suar M; Luethy P
    J Am Mosq Control Assoc; 2011 Jun; 27(2):159-61. PubMed ID: 21805851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Bacillus thuringiensis isolate possessing a spore-associated filament.
    Rampersad J; Khan A; Ammons D
    Curr Microbiol; 2003 Oct; 47(4):355-7. PubMed ID: 14629020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.