These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10831039)

  • 1. Primary mesenchyme cell-ring pattern formation in 2D-embryos of the sea urchin.
    Katow H; Nakajima Y; Uemura I
    Dev Growth Differ; 2000 Feb; 42(1):9-17. PubMed ID: 10831039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads.
    Ettensohn CA; McClay DR
    Dev Biol; 1986 Oct; 117(2):380-91. PubMed ID: 3758478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.
    Malinda KM; Ettensohn CA
    Dev Biol; 1994 Aug; 164(2):562-78. PubMed ID: 8045352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae.
    Gustafson T; Wolpert L
    Exp Cell Res; 1999 Dec; 253(2):288-95. PubMed ID: 10585249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of sea urchin primary mesenchyme cell migration on xyloside- and sulfate-sensitive cell surface-associated components.
    Lane MC; Solursh M
    Dev Biol; 1988 May; 127(1):78-87. PubMed ID: 3360213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo.
    Miller RN; Dalamagas DG; Kingsley PD; Ettensohn CA
    Mech Dev; 1996 Nov; 60(1):3-12. PubMed ID: 9025057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition.
    Wu SY; Ferkowicz M; McClay DR
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):241-52. PubMed ID: 18228256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo.
    Malinda KM; Fisher GW; Ettensohn CA
    Dev Biol; 1995 Dec; 172(2):552-66. PubMed ID: 8612971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos.
    Kominami T; Takaichi M
    Dev Growth Differ; 1998 Oct; 40(5):545-53. PubMed ID: 9783480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos.
    Amemiya S
    Exp Cell Res; 1989 Aug; 183(2):453-62. PubMed ID: 2767159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae.
    Kominami T; Takata H
    Dev Growth Differ; 2003 Apr; 45(2):129-42. PubMed ID: 12752501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary mesenchyme cell patterning during the early stages following ingression.
    Peterson RE; McClay DR
    Dev Biol; 2003 Feb; 254(1):68-78. PubMed ID: 12606282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo.
    Ettensohn CA; Malinda KM
    Development; 1993 Sep; 119(1):155-67. PubMed ID: 8275852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.
    Piacentino ML; Chung O; Ramachandran J; Zuch DT; Yu J; Conaway EA; Reyna AE; Bradham CA
    Dev Biol; 2016 Apr; 412(1):44-56. PubMed ID: 26905309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specification process of animal plate in the sea urchin embryo.
    Sasaki H; Kominami T
    Dev Growth Differ; 2008 Sep; 50(7):595-606. PubMed ID: 19238730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.