These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10831039)

  • 41. Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus.
    Suzuki HR; Reiter RS; D'Alessio M; Di Liberto M; Ramirez F; Exposito JY; Gambino R; Solursh M
    Zoolog Sci; 1997 Jun; 14(3):449-54. PubMed ID: 9314740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell interactions in the sea urchin embryo studied by fluorescence photoablation.
    Ettensohn CA
    Science; 1990 Jun; 248(4959):1115-8. PubMed ID: 2188366
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva.
    Minsuk SB; Andrews ME; Raff RA
    Dev Genes Evol; 2005 Aug; 215(8):383-92. PubMed ID: 15834585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell movements in the sea urchin embryo.
    Ettensohn CA
    Curr Opin Genet Dev; 1999 Aug; 9(4):461-5. PubMed ID: 10449348
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Genesis; 2014 Mar; 52(3):158-72. PubMed ID: 24515750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos.
    Piacentino ML; Ramachandran J; Bradham CA
    Development; 2015 Mar; 142(5):943-52. PubMed ID: 25633352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
    Miller JR; McClay DR
    Dev Biol; 1997 Dec; 192(2):323-39. PubMed ID: 9441671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins.
    Piacentino ML; Zuch DT; Fishman J; Rose S; Speranza EE; Li C; Yu J; Chung O; Ramachandran J; Ferrell P; Patel V; Reyna A; Hameeduddin H; Chaves J; Hewitt FB; Bardot E; Lee D; Core AB; Hogan JD; Keenan JL; Luo L; Coulombe-Huntington J; Blute TA; Oleinik E; Ibn-Salem J; Poustka AJ; Bradham CA
    Development; 2016 Feb; 143(4):703-14. PubMed ID: 26755701
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
    Bradham CA; Miranda EL; McClay DR
    Dev Dyn; 2004 Apr; 229(4):713-21. PubMed ID: 15042695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron.
    Long JT; Irwin L; Enomoto AC; Grow Z; Ranck J; Peeler MT
    Genesis; 2015 Dec; 53(12):762-9. PubMed ID: 26297876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pattern formation during gastrulation in the sea urchin embryo.
    McClay DR; Armstrong NA; Hardin J
    Dev Suppl; 1992; ():33-41. PubMed ID: 1299366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos.
    Takata H; Kominami T
    Zoolog Sci; 2004 Oct; 21(10):1025-35. PubMed ID: 15514472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sea urchin primary mesenchyme cells: relation of cell polarity to the epithelial-mesenchymal transformation.
    Anstrom JA; Raff RA
    Dev Biol; 1988 Nov; 130(1):57-66. PubMed ID: 3053298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in the pattern of adherens junction-associated beta-catenin accompany morphogenesis in the sea urchin embryo.
    Miller JR; McClay DR
    Dev Biol; 1997 Dec; 192(2):310-22. PubMed ID: 9441670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.