These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10831113)

  • 1. Magnetoencephalographic characterization of sleep spindles in humans.
    Shih JJ; Weisend MP; Davis JT; Huang M
    J Clin Neurophysiol; 2000 Mar; 17(2):224-31. PubMed ID: 10831113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex.
    Anderer P; Klösch G; Gruber G; Trenker E; Pascual-Marqui RD; Zeitlhofer J; Barbanoj MJ; Rappelsberger P; Saletu B
    Neuroscience; 2001; 103(3):581-92. PubMed ID: 11274780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical source imaging of sleep spindles.
    Del Felice A; Arcaro C; Storti SF; Fiaschi A; Manganotti P
    Clin EEG Neurosci; 2014 Jul; 45(3):184-92. PubMed ID: 24114073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling.
    Dehghani N; Cash SS; Chen CC; Hagler DJ; Huang M; Dale AM; Halgren E
    PLoS One; 2010 Jul; 5(7):e11454. PubMed ID: 20628643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
    Tamaki M; Matsuoka T; Nittono H; Hori T
    Clin Neurophysiol; 2009 May; 120(5):878-86. PubMed ID: 19376746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording.
    Urakami Y
    J Clin Neurophysiol; 2008 Feb; 25(1):13-24. PubMed ID: 18303556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Developmental characteristics of frontal spindle and centro-parietal spindle].
    Nagata K; Shinomiya S; Takahashi K; Masumura T
    No To Hattatsu; 1996 Sep; 28(5):409-17. PubMed ID: 8831244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between sleep spindles and activities of the cerebral cortex after hemispheric stroke as determined by simultaneous EEG and MEG recordings.
    Urakami Y
    J Clin Neurophysiol; 2009 Aug; 26(4):248-56. PubMed ID: 19584747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generator sites of spontaneous MEG activity during sleep.
    Lu ST; Kajola M; Joutsiniemi SL; Knuutila J; Hari R
    Electroencephalogr Clin Neurophysiol; 1992 Mar; 82(3):182-96. PubMed ID: 1371438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grouping of MEG gamma oscillations by EEG sleep spindles.
    Ayoub A; Mölle M; Preissl H; Born J
    Neuroimage; 2012 Jan; 59(2):1491-500. PubMed ID: 21893206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms.
    Manshanden I; De Munck JC; Simon NR; Lopes da Silva FH
    Clin Neurophysiol; 2002 Dec; 113(12):1937-47. PubMed ID: 12464331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of sleep spindles in human medial and basal temporal lobes.
    Nakabayashi T; Uchida S; Maehara T; Hirai N; Nakamura M; Arakaki H; Shimisu H; Okubo Y
    Psychiatry Clin Neurosci; 2001 Feb; 55(1):57-65. PubMed ID: 11235859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current source density distribution of sleep spindles in humans as found by synthetic aperture magnetometry.
    Ishii R; Dziewas R; Chau W; Sörös P; Okamoto H; Gunji A; Pantev C
    Neurosci Lett; 2003 Apr; 340(1):25-8. PubMed ID: 12648750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal changes of slow wave activities before and after 14 Hz/12 Hz sleep spindles during stage 2 sleep.
    Ueda K; Nittono H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 2001 Jun; 55(3):183-4. PubMed ID: 11422833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of electroencephalographic dipoles of interictal spikes from prolonged scalp video-electroencephalography and magnetoencephalographic dipoles from short-term recording in children with extratemporal lobe epilepsy.
    Ochi A; Otsubo H; Sharma R; Hunjan A; Rutka JT; Chuang SH; Kamijo K; Yamazaki T; Quint P; Kurelowech L; Sobel DF; Aung MH; Snead OC
    J Child Neurol; 2001 Sep; 16(9):661-7. PubMed ID: 11575607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topographical frequency dynamics within EEG and MEG sleep spindles.
    Dehghani N; Cash SS; Halgren E
    Clin Neurophysiol; 2011 Feb; 122(2):229-35. PubMed ID: 20637689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.
    Dehghani N; Cash SS; Rossetti AO; Chen CC; Halgren E
    J Neurophysiol; 2010 Jul; 104(1):179-88. PubMed ID: 20427615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical analysis of sleep spindle occurrences.
    Panas D; Malinowska U; Piotrowski T; Żygierewicz J; Suffczyński P
    PLoS One; 2013; 8(4):e59318. PubMed ID: 23560045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Approach to Estimating the Cortical Sources of Sleep Spindles Using Simultaneous EEG/MEG.
    Mylonas D; Sjøgård M; Shi Z; Baxter B; Hämäläinen M; Manoach DS; Khan S
    Front Neurol; 2022; 13():871166. PubMed ID: 35785365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.