BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10831408)

  • 21. [Effects of p-nitrophenol and organophosphorous nitroaromatic insecticides on the respiratory activity of free and immobilized cells of strains S-11 and BA-11 of Pseudomonas putida].
    Ignatov OV; Guliĭ OI; Singirtsev IN; Shcherbakov AA; Makarov OE; Ignatov VV
    Prikl Biokhim Mikrobiol; 2002; 38(3):278-85. PubMed ID: 12068580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of pentafluorosulfanyl-substituted aminophenol in Pseudomonas spp.
    Saccomanno M; Hussain S; O'Connor NK; Beier P; Somlyay M; Konrat R; Murphy CD
    Biodegradation; 2018 Jun; 29(3):259-270. PubMed ID: 29603052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of a gene cluster involved in the catabolism of p-nitrophenol from Pseudomonas putida DLL-E4.
    Shen W; Liu W; Zhang J; Tao J; Deng H; Cao H; Cui Z
    Bioresour Technol; 2010 Oct; 101(19):7516-22. PubMed ID: 20466541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway.
    Davis JK; He Z; Somerville CC; Spain JC
    Arch Microbiol; 1999 Nov; 172(5):330-9. PubMed ID: 10550475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45.
    Somerville CC; Nishino SF; Spain JC
    J Bacteriol; 1995 Jul; 177(13):3837-42. PubMed ID: 7601851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of alternative carbon sources on biological transformation of nitrophenols.
    Karim K; Gupta SK
    Biodegradation; 2002; 13(5):353-60. PubMed ID: 12688587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth phase dependent substrate utilization by Pseudomonas strain PH1.
    Narde GK; Purohit HJ
    Prikl Biokhim Mikrobiol; 2002; 38(6):653-7. PubMed ID: 12449795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp.
    Park HS; Lim SJ; Chang YK; Livingston AG; Kim HS
    Appl Environ Microbiol; 1999 Mar; 65(3):1083-91. PubMed ID: 10049867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2.
    Zeyer J; Kocher HP; Timmis KN
    Appl Environ Microbiol; 1986 Aug; 52(2):334-9. PubMed ID: 3752997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway).
    He Z; Spain JC
    Arch Microbiol; 1999 Apr; 171(5):309-16. PubMed ID: 10382261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols.
    Kadiyala V; Nadeau LJ; Spain JC
    Appl Environ Microbiol; 2003 Nov; 69(11):6520-6. PubMed ID: 14602609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of p-aminophenol and p-nitrophenol from aqueous solution through adsorption on antimony, cadmium, and zirconium ferrocyanides.
    Tewari BB; Boodhoo M
    J Colloid Interface Sci; 2005 Sep; 289(2):328-32. PubMed ID: 15935363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1.
    Tikariha H; Pal RR; Qureshi A; Kapley A; Purohit HJ
    Gene; 2016 Oct; 591(2):382-92. PubMed ID: 27317892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98.
    Pandey J; Heipieper HJ; Chauhan A; Arora PK; Prakash D; Takeo M; Jain RK
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):597-607. PubMed ID: 21626025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol.
    Min J; Wang F; Cai Y; Liang S; Zhang Z; Jiang X
    Chem Commun (Camb); 2015 Jan; 51(4):761-4. PubMed ID: 25421649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols.
    Ouyang SP; Liu Q; Sun SY; Chen JC; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):246-50. PubMed ID: 17826856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of a pseudomonas strain that degrades 4-acetamidophenol and 4-aminophenol.
    Ahmed S; Javed MA; Tanvir S; Hameed A
    Biodegradation; 2001; 12(5):303-9. PubMed ID: 11995823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies of paracetamol/phenacetin toxicity: isolation and characterization of p-aminophenol-glutathione conjugate.
    Eyanagi R; Hisanari Y; Shigematsu H
    Xenobiotica; 1991 Jun; 21(6):793-803. PubMed ID: 1949909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Simultaneous determination of 11 aminophenols in hair dyes by high performance liquid chromatography].
    Zhu W; Wang C; Yang J; Wei W; Sun Z; Zhang S
    Se Pu; 2012 Sep; 30(9):870-5. PubMed ID: 23285966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotransformation of limonene by Pseudomonas putida.
    Chatterjee T; Bhattacharyya DK
    Appl Microbiol Biotechnol; 2001 May; 55(5):541-6. PubMed ID: 11414318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.