These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 10831417)
1. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Whiteley AS; Bailey MJ Appl Environ Microbiol; 2000 Jun; 66(6):2400-7. PubMed ID: 10831417 [TBL] [Abstract][Full Text] [Related]
2. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Nielsen AT; Liu WT; Filipe C; Grady L; Molin S; Stahl DA Appl Environ Microbiol; 1999 Mar; 65(3):1251-8. PubMed ID: 10049891 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. LaPara TM; Nakatsu CH; Pantea L; Alleman JE Appl Environ Microbiol; 2000 Sep; 66(9):3951-9. PubMed ID: 10966414 [TBL] [Abstract][Full Text] [Related]
4. Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. Abell GC; Bowman JP FEMS Microbiol Ecol; 2005 Aug; 53(3):379-91. PubMed ID: 16329957 [TBL] [Abstract][Full Text] [Related]
5. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Eiler A; Langenheder S; Bertilsson S; Tranvik LJ Appl Environ Microbiol; 2003 Jul; 69(7):3701-9. PubMed ID: 12839735 [TBL] [Abstract][Full Text] [Related]
6. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Li Z; He L; Miao X Curr Microbiol; 2007 Dec; 55(6):465-72. PubMed ID: 17896134 [TBL] [Abstract][Full Text] [Related]
7. 16S rRNA in situ probing for the determination of the family level community structure implicated in enhanced biological nutrient removal. Mudaly DD; Atkinson BW; Bux F Water Sci Technol; 2001; 43(1):91-8. PubMed ID: 11379117 [TBL] [Abstract][Full Text] [Related]
8. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals. Radeva G; Selenska-Pobell S Can J Microbiol; 2005 Nov; 51(11):910-23. PubMed ID: 16333330 [TBL] [Abstract][Full Text] [Related]
9. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Gillan DC; Danis B; Pernet P; Joly G; Dubois P Appl Environ Microbiol; 2005 Feb; 71(2):679-90. PubMed ID: 15691917 [TBL] [Abstract][Full Text] [Related]
10. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. Ros M; Goberna M; Pascual JA; Klammer S; Insam H J Microbiol Methods; 2008 Mar; 72(3):221-6. PubMed ID: 18258321 [TBL] [Abstract][Full Text] [Related]
11. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Weber S; Stubner S; Conrad R Appl Environ Microbiol; 2001 Mar; 67(3):1318-27. PubMed ID: 11229927 [TBL] [Abstract][Full Text] [Related]
12. Bacterioplankton community structure in a maritime antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Pearce DA Microb Ecol; 2003 Jul; 46(1):92-105. PubMed ID: 12739078 [TBL] [Abstract][Full Text] [Related]
13. Culture-dependent and -independent approaches establish the complexity of a PAH-degrading microbial consortium. Viñas M; Sabaté J; Guasp C; Lalucat J; Solanas AM Can J Microbiol; 2005 Nov; 51(11):897-909. PubMed ID: 16333329 [TBL] [Abstract][Full Text] [Related]
14. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Kindaichi T; Ito T; Okabe S Appl Environ Microbiol; 2004 Mar; 70(3):1641-50. PubMed ID: 15006789 [TBL] [Abstract][Full Text] [Related]
15. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Sekiguchi H; Watanabe M; Nakahara T; Xu B; Uchiyama H Appl Environ Microbiol; 2002 Oct; 68(10):5142-50. PubMed ID: 12324365 [TBL] [Abstract][Full Text] [Related]
16. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Glöckner FO; Zaichikov E; Belkova N; Denissova L; Pernthaler J; Pernthaler A; Amann R Appl Environ Microbiol; 2000 Nov; 66(11):5053-65. PubMed ID: 11055963 [TBL] [Abstract][Full Text] [Related]
17. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Ouverney CC; Fuhrman JA Appl Environ Microbiol; 1999 Apr; 65(4):1746-52. PubMed ID: 10103276 [TBL] [Abstract][Full Text] [Related]
18. Responses of Baltic Sea ice and open-water natural bacterial communities to salinity change. Kaartokallio H; Laamanen M; Sivonen K Appl Environ Microbiol; 2005 Aug; 71(8):4364-71. PubMed ID: 16085826 [TBL] [Abstract][Full Text] [Related]
19. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Sjöling S; Cowan DA Extremophiles; 2003 Aug; 7(4):275-82. PubMed ID: 12910387 [TBL] [Abstract][Full Text] [Related]
20. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Antón J; Rosselló-Mora R; Rodríguez-Valera F; Amann R Appl Environ Microbiol; 2000 Jul; 66(7):3052-7. PubMed ID: 10877805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]