These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 10831421)
1. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. King JK; Kostka JE; Frischer ME; Saunders FM Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421 [TBL] [Abstract][Full Text] [Related]
2. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments. Shao D; Kang Y; Wu S; Wong MH Sci Total Environ; 2012 May; 424():331-6. PubMed ID: 22444059 [TBL] [Abstract][Full Text] [Related]
3. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria. Ekstrom EB; Morel FM; Benoit JM Appl Environ Microbiol; 2003 Sep; 69(9):5414-22. PubMed ID: 12957930 [TBL] [Abstract][Full Text] [Related]
4. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria. Ekstrom EB; Morel FM Environ Sci Technol; 2008 Jan; 42(1):93-9. PubMed ID: 18350881 [TBL] [Abstract][Full Text] [Related]
5. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia. Correia RRS; Guimarães JRD Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167 [TBL] [Abstract][Full Text] [Related]
6. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Matsui GY; Ringelberg DB; Lovell CR Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900 [TBL] [Abstract][Full Text] [Related]
7. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kucharzyk KH; Kim B; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2014 Aug; 48(16):9133-41. PubMed ID: 25007388 [TBL] [Abstract][Full Text] [Related]
8. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Drott A; Lambertsson L; Björn E; Skyllberg U Environ Sci Technol; 2007 Apr; 41(7):2270-6. PubMed ID: 17438774 [TBL] [Abstract][Full Text] [Related]
9. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Yu RQ; Flanders JR; Mack EE; Turner R; Mirza MB; Barkay T Environ Sci Technol; 2012 Mar; 46(5):2684-91. PubMed ID: 22148328 [TBL] [Abstract][Full Text] [Related]
10. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
11. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I-Bench-scale microcosm study to assess methylmercury production. Randall PM; Fimmen R; Lal V; Darlington R Environ Res; 2013 Aug; 125():30-40. PubMed ID: 23768845 [TBL] [Abstract][Full Text] [Related]
12. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. King JK; Kostka JE; Frischer ME; Saunders FM; Jahnke RA Environ Sci Technol; 2001 Jun; 35(12):2491-6. PubMed ID: 11432553 [TBL] [Abstract][Full Text] [Related]
13. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Gilmour CC; Elias DA; Kucken AM; Brown SD; Palumbo AV; Schadt CW; Wall JD Appl Environ Microbiol; 2011 Jun; 77(12):3938-51. PubMed ID: 21515733 [TBL] [Abstract][Full Text] [Related]
14. Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Benoit JM; Gilmour CC; Mason RP Appl Environ Microbiol; 2001 Jan; 67(1):51-8. PubMed ID: 11133427 [TBL] [Abstract][Full Text] [Related]
15. Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments. Christensen GA; Somenahally AC; Moberly JG; Miller CM; King AJ; Gilmour CC; Brown SD; Podar M; Brandt CC; Brooks SC; Palumbo AV; Wall JD; Elias DA Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150503 [TBL] [Abstract][Full Text] [Related]
16. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. Yu RQ; Adatto I; Montesdeoca MR; Driscoll CT; Hines ME; Barkay T FEMS Microbiol Ecol; 2010 Dec; 74(3):655-68. PubMed ID: 20955196 [TBL] [Abstract][Full Text] [Related]
17. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Achá D; Hintelmann H; Yee J Chemosphere; 2011 Feb; 82(6):911-6. PubMed ID: 21074243 [TBL] [Abstract][Full Text] [Related]
18. Using sulfate-amended sediment slurry batch reactors to evaluate mercury methylation. Harmon SM; King JK; Gladden JB; Newman LA Arch Environ Contam Toxicol; 2007 Apr; 52(3):326-31. PubMed ID: 17384981 [TBL] [Abstract][Full Text] [Related]
19. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kim B; Levard C; Reinsch BC; Lowry GV; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2012 Jul; 46(13):6950-8. PubMed ID: 22145980 [TBL] [Abstract][Full Text] [Related]
20. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures. Kucharzyk KH; Deshusses MA; Porter KA; Hsu-Kim H Environ Sci Process Impacts; 2015 Sep; 17(9):1568-77. PubMed ID: 26211614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]