BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10831455)

  • 1. trans-o-Hydroxybenzylidenepyruvate hydratase-aldolase as a biocatalyst.
    Eaton RW
    Appl Environ Microbiol; 2000 Jun; 66(6):2668-72. PubMed ID: 10831455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions.
    Eaton RW; Chapman PJ
    J Bacteriol; 1992 Dec; 174(23):7542-54. PubMed ID: 1447127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldol reactions of the trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) from Pseudomonas fluorescens N3.
    Sello G; Di Gennaro P
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1702-12. PubMed ID: 23722948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the aldol condensation activity of the trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) cloned from Pseudomonas fluorescens N3.
    Ferrara S; Mapelli E; Sello G; Di Gennaro P
    Biochim Biophys Acta; 2011 May; 1814(5):622-9. PubMed ID: 21443971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and enzymatic characterization of
    Suzuki T; Takizawa N
    Biosci Biotechnol Biochem; 2019 Oct; 83(10):1884-1888. PubMed ID: 31161894
    [No Abstract]   [Full Text] [Related]  

  • 6. Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria.
    Eaton RW; Nitterauer JD
    J Bacteriol; 1994 Jul; 176(13):3992-4002. PubMed ID: 8021182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of a sub-family of enzymes related to N-acetylneuraminate lyase.
    Lawrence MC; Barbosa JA; Smith BJ; Hall NE; Pilling PA; Ooi HC; Marcuccio SM
    J Mol Biol; 1997 Feb; 266(2):381-99. PubMed ID: 9047371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and genetic characterization of trans-2'-carboxybenzalpyruvate hydratase-aldolase from a phenanthrene-degrading Nocardioides strain.
    Iwabuchi T; Harayama S
    J Bacteriol; 1998 Feb; 180(4):945-9. PubMed ID: 9473051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase.
    DeSantis G; Liu J; Clark DP; Heine A; Wilson IA; Wong CH
    Bioorg Med Chem; 2003 Jan; 11(1):43-52. PubMed ID: 12467706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling.
    Wang W; Baker P; Seah SY
    Biochemistry; 2010 May; 49(17):3774-82. PubMed ID: 20364820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli dihydrodipicolinate synthase: characterization of the imine intermediate and the product of bromopyruvate treatment by electrospray mass spectrometry.
    Borthwick EB; Connell SJ; Tudor DW; Robins DJ; Shneier A; Abell C; Coggins JR
    Biochem J; 1995 Jan; 305 ( Pt 2)(Pt 2):521-4. PubMed ID: 7832769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid.
    Eaton RW
    J Bacteriol; 1994 Dec; 176(24):7757-62. PubMed ID: 8002605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic hydrolysis of cyanohydrins with recombinant nitrile hydratase and amidase from Rhodococcus erythropolis.
    Reisinger Ch; Osprian I; Glieder A; Schoemaker HE; Griengl H; Schwab H
    Biotechnol Lett; 2004 Nov; 26(21):1675-80. PubMed ID: 15604819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Enantio- and Diastereoselective Chemoenzymatic Synthesis of α-Fluoro β-Hydroxy Carboxylic Esters.
    Howard JK; Müller M; Berry A; Nelson A
    Angew Chem Int Ed Engl; 2016 Jun; 55(23):6767-70. PubMed ID: 27090612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereospecificity in meta-fission catabolic pathways.
    Burlingame R; Chapman PJ
    J Bacteriol; 1983 Jul; 155(1):424-6. PubMed ID: 6345511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the cyanide hydratase enzyme from Fusarium lateritium in Escherichia coli and identification of an essential cysteine residue.
    Brown DT; Turner PD; O'Reilly C
    FEMS Microbiol Lett; 1995 Dec; 134(2-3):143-6. PubMed ID: 8586260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new class of substituted aryl bis(oxazoline) ligands for highly enantioselective copper-catalyzed asymmetric aldol addition of dienolsilane to pyruvate and glyoxylate esters.
    Le JC; Pagenkopf BL
    Org Lett; 2004 Oct; 6(22):4097-9. PubMed ID: 15496108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis.
    Song L; Yuan HJ; Coffey L; Doran J; Wang MX; Qian S; O'Reilly C
    Biotechnol Lett; 2008 Apr; 30(4):755-62. PubMed ID: 18043868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereospecific enzymes in the degradation of aromatic compounds by pseudomonas putida.
    Collinsworth WL; Chapman PJ; Dagley S
    J Bacteriol; 1973 Feb; 113(2):922-31. PubMed ID: 4690969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversibility of the tryptophanase reaction: synthesis of tryptophan from indole, pyruvate, and ammonia.
    Watanabe T; Snell EE
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1086-90. PubMed ID: 4556453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.