These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 10831458)
1. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Kaplan H; Hutkins RW Appl Environ Microbiol; 2000 Jun; 66(6):2682-4. PubMed ID: 10831458 [TBL] [Abstract][Full Text] [Related]
2. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Rossi M; Corradini C; Amaretti A; Nicolini M; Pompei A; Zanoni S; Matteuzzi D Appl Environ Microbiol; 2005 Oct; 71(10):6150-8. PubMed ID: 16204533 [TBL] [Abstract][Full Text] [Related]
3. Influence of fructooligosaccharides on the fermentation profile and viable counts in a symbiotic low fat milk. Oliveira RP; Casazza AA; Aliakbarian B; Perego P; Converti A; Oliveira MN Braz J Microbiol; 2013; 44(2):431-4. PubMed ID: 24294233 [TBL] [Abstract][Full Text] [Related]
4. Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate. Sghir A; Chow JM; Mackie RI J Appl Microbiol; 1998 Oct; 85(4):769-77. PubMed ID: 9812388 [TBL] [Abstract][Full Text] [Related]
5. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Ward RE; Niñonuevo M; Mills DA; Lebrilla CB; German JB Mol Nutr Food Res; 2007 Nov; 51(11):1398-405. PubMed ID: 17966141 [TBL] [Abstract][Full Text] [Related]
6. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Ward RE; Niñonuevo M; Mills DA; Lebrilla CB; German JB Appl Environ Microbiol; 2006 Jun; 72(6):4497-9. PubMed ID: 16751577 [TBL] [Abstract][Full Text] [Related]
7. Metabolization of beta-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. Marx SP; Winkler S; Hartmeier W FEMS Microbiol Lett; 2000 Jan; 182(1):163-9. PubMed ID: 10612749 [TBL] [Abstract][Full Text] [Related]
8. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. Korakli M; Gänzle MG; Vogel RF J Appl Microbiol; 2002; 92(5):958-65. PubMed ID: 11972702 [TBL] [Abstract][Full Text] [Related]
9. Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. Salazar N; Prieto A; Leal JA; Mayo B; Bada-Gancedo JC; de los Reyes-Gavilán CG; Ruas-Madiedo P J Dairy Sci; 2009 Sep; 92(9):4158-68. PubMed ID: 19700676 [TBL] [Abstract][Full Text] [Related]
10. Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. Pedreschi R; Campos D; Noratto G; Chirinos R; Cisneros-Zevallos L J Agric Food Chem; 2003 Aug; 51(18):5278-84. PubMed ID: 12926870 [TBL] [Abstract][Full Text] [Related]
11. In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. Martín-Peláez S; Gibson GR; Martín-Orúe SM; Klinder A; Rastall RA; La Ragione RM; Woodward MJ; Costabile A FEMS Microbiol Ecol; 2008 Dec; 66(3):608-19. PubMed ID: 19049655 [TBL] [Abstract][Full Text] [Related]
12. In vitro fermentation of sugar beet arabino-oligosaccharides by fecal microbiota obtained from patients with ulcerative colitis to selectively stimulate the growth of Bifidobacterium spp. and Lactobacillus spp. Vigsnæs LK; Holck J; Meyer AS; Licht TR Appl Environ Microbiol; 2011 Dec; 77(23):8336-44. PubMed ID: 21984234 [TBL] [Abstract][Full Text] [Related]
13. Utilization of diverse oligosaccharides for growth by Bifidobacterium and Lactobacillus species and their in vitro co-cultivation characteristics. Dong Y; Han M; Fei T; Liu H; Gai Z Int Microbiol; 2024 Jun; 27(3):941-952. PubMed ID: 37946011 [TBL] [Abstract][Full Text] [Related]
14. Dietary Casein and Soy Protein Isolate Modulate the Effects of Raffinose and Fructooligosaccharides on the Composition and Fermentation of Gut Microbiota in Rats. Bai G; Ni K; Tsuruta T; Nishino N J Food Sci; 2016 Aug; 81(8):H2093-8. PubMed ID: 27434756 [TBL] [Abstract][Full Text] [Related]
15. Short-chain fructooligosaccharides, in spite of being fermented in the upper part of the large intestine, have anti-inflammatory activity in the TNBS model of colitis. Lara-Villoslada F; de Haro O; Camuesco D; Comalada M; Velasco J; Zarzuelo A; Xaus J; Galvez J Eur J Nutr; 2006 Oct; 45(7):418-25. PubMed ID: 16871370 [TBL] [Abstract][Full Text] [Related]
16. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Moens F; Verce M; De Vuyst L Int J Food Microbiol; 2017 Jan; 241():225-236. PubMed ID: 27810444 [TBL] [Abstract][Full Text] [Related]
17. Selective carbohydrate utilization by lactobacilli and bifidobacteria. Watson D; O'Connell Motherway M; Schoterman MH; van Neerven RJ; Nauta A; van Sinderen D J Appl Microbiol; 2013 Apr; 114(4):1132-46. PubMed ID: 23240984 [TBL] [Abstract][Full Text] [Related]
18. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Chien HL; Huang HY; Chou CC Food Microbiol; 2006 Dec; 23(8):772-8. PubMed ID: 16943081 [TBL] [Abstract][Full Text] [Related]
19. Effects of fructooligosaccharides and Saccharomyces boulardii on the compositional structure and metabolism of gut microbiota in students. Fu H; Chen Z; Teng W; Du Z; Zhang Y; Ye X; Yu Z; Zhang Y; Pi X Microbiol Res; 2024 Aug; 285():127741. PubMed ID: 38761487 [TBL] [Abstract][Full Text] [Related]
20. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. Thongaram T; Hoeflinger JL; Chow J; Miller MJ J Dairy Sci; 2017 Oct; 100(10):7825-7833. PubMed ID: 28780103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]