These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10831765)

  • 1. Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact.
    Zachariah SG; Sanders JE
    J Biomech; 2000 Jul; 33(7):895-9. PubMed ID: 10831765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
    Lee WC; Zhang M; Jia X; Cheung JT
    Med Eng Phys; 2004 Oct; 26(8):655-62. PubMed ID: 15471693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket.
    Zhang M; Roberts C
    Med Eng Phys; 2000 Nov; 22(9):607-12. PubMed ID: 11259929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a non-linear finite element modelling of the below-knee prosthetic socket interface.
    Zhang M; Lord M; Turner-Smith AR; Roberts VC
    Med Eng Phys; 1995 Dec; 17(8):559-66. PubMed ID: 8564149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket.
    Zhang L; Zhu M; Shen L; Zheng F
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1270-3. PubMed ID: 24109926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frictional action at lower limb/prosthetic socket interface.
    Zhang M; Turner-Smith AR; Roberts VC; Tanner A
    Med Eng Phys; 1996 Apr; 18(3):207-14. PubMed ID: 8718946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees.
    Jia X; Zhang M; Li X; Lee WC
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):630-5. PubMed ID: 15878224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model.
    Lin CC; Chang CH; Wu CL; Chung KC; Liao IC
    Med Eng Phys; 2004 Jan; 26(1):1-9. PubMed ID: 14644593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: comparison of finite element results with experimental measurements.
    Sanders JE; Daly CH
    J Rehabil Res Dev; 1993; 30(2):191-204. PubMed ID: 8035348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Three-dimensional finite element analyses on the transtibial residual limb and its prosthetic socket].
    Zhang M; Mak AF; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):403-6. PubMed ID: 11211825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket--roles of interface friction and distal-end boundary conditions.
    Zhang M; Mak AF
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):337-46. PubMed ID: 8973960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
    Zachariah SG; Sanders JE; Turkiyyah GM
    IEEE Trans Rehabil Eng; 1996 Jun; 4(2):91-102. PubMed ID: 8798076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric analysis using the finite element method to investigate prosthetic interface stresses for persons with trans-tibial amputation.
    Silver-Thorn MB; Childress DS
    J Rehabil Res Dev; 1996 Jul; 33(3):227-38. PubMed ID: 8823671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Fluid Dynamics in Distributing Ankle Stresses in Anatomic and Injured States.
    Hamid KS; Scott AT; Nwachukwu BU; Danelson KA
    Foot Ankle Int; 2016 Dec; 37(12):1343-1349. PubMed ID: 27530984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee.
    Portnoy S; Yizhar Z; Shabshin N; Itzchak Y; Kristal A; Dotan-Marom Y; Siev-Ner I; Gefen A
    J Biomech; 2008; 41(9):1897-909. PubMed ID: 18495134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface mechanics in lower-limb external prosthetics: a review of finite element models.
    Zachariah SG; Sanders JE
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):288-302. PubMed ID: 8973955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model to assess transtibial prosthetic sockets with elastomeric liners.
    Cagle JC; Reinhall PG; Allyn KJ; McLean J; Hinrichs P; Hafner BJ; Sanders JE
    Med Biol Eng Comput; 2018 Jul; 56(7):1227-1240. PubMed ID: 29235055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis for the evaluation of the structural behaviour, of a prosthesis for trans-tibial amputees.
    Omasta M; Paloušek D; Návrat T; Rosický J
    Med Eng Phys; 2012 Jan; 34(1):38-45. PubMed ID: 21764351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key considerations for finite element modelling of the residuum-prosthetic socket interface.
    Steer JW; Worsley PR; Browne M; Dickinson A
    Prosthet Orthot Int; 2021 Apr; 45(2):138-146. PubMed ID: 33176573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between two techniques for modeling interface conditions in a porous coated hip endoprosthesis.
    Hefzy MS; Singh SP
    Med Eng Phys; 1997 Jan; 19(1):50-62. PubMed ID: 9140873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.