BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10831931)

  • 1. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study.
    Loong CK; Rey C; Kuhn LT; Combes C; Wu Y; Chen S; Glimcher MJ
    Bone; 2000 Jun; 26(6):599-602. PubMed ID: 10831931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.
    Pasteris JD; Wopenka B; Freeman JJ; Rogers K; Valsami-Jones E; van der Houwen JA; Silva MJ
    Biomaterials; 2004 Jan; 25(2):229-38. PubMed ID: 14585710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites.
    Wu Y; Ackerman JL; Kim HM; Rey C; Barroug A; Glimcher MJ
    J Bone Miner Res; 2002 Mar; 17(3):472-80. PubMed ID: 11874238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient precursor strategy or very small biological apatite crystals?
    Grynpas MD; Omelon S
    Bone; 2007 Aug; 41(2):162-4. PubMed ID: 17537689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy.
    Cho G; Wu Y; Ackerman JL
    Science; 2003 May; 300(5622):1123-7. PubMed ID: 12750514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Bioapatite Hydroxyls for Research on Archeological Burned Bone.
    Mamede AP; Vassalo AR; Piga G; Cunha E; Parker SF; Marques MPM; Batista de Carvalho LAE; Gonçalves D
    Anal Chem; 2018 Oct; 90(19):11556-11563. PubMed ID: 30176725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite.
    Moradian-Oldak J; Weiner S; Addadi L; Landis WJ; Traub W
    Connect Tissue Res; 1991; 25(3-4):219-28. PubMed ID: 2060300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonate assignment and calibration in the Raman spectrum of apatite.
    Awonusi A; Morris MD; Tecklenburg MM
    Calcif Tissue Int; 2007 Jul; 81(1):46-52. PubMed ID: 17551767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient structural bone-like apatite induced by chitosan hydrogel via ion assembly.
    Li B; Wang Y; Jia D; Zhou Y
    J Biomater Sci Polym Ed; 2011; 22(4-6):505-17. PubMed ID: 20566043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonate ions in apatites: infrared investigations in the upsilon 4 CO3 domain.
    el Feki H; Rey C; Vignoles M
    Calcif Tissue Int; 1991 Oct; 49(4):269-74. PubMed ID: 1760771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites.
    Penel G; Leroy G; Rey C; Bres E
    Calcif Tissue Int; 1998 Dec; 63(6):475-81. PubMed ID: 9817941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxide and carbonate in rat bone mineral and its synthetic analogues.
    Termine JD; Lundy DR
    Calcif Tissue Res; 1973; 13(1):73-82. PubMed ID: 4750795
    [No Abstract]   [Full Text] [Related]  

  • 14. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature.
    Smith CE; Chong DL; Bartlett JD; Margolis HC
    J Bone Miner Res; 2005 Feb; 20(2):240-9. PubMed ID: 15647818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Dec; 49(6):383-8. PubMed ID: 1818762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of 1H --> 31P NMR cross-polarization in bone apatite and its mineral standards.
    Kaflak A; Kolodziejski W
    Magn Reson Chem; 2008 Apr; 46(4):335-41. PubMed ID: 18306247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage.
    Kim H; Rey C; Glimcher MJ
    Calcif Tissue Int; 1996 Jul; 59(1):58-63. PubMed ID: 8661986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evaluation of hydroxyl ions as a nucleating agent for apatite on electrospun non-woven poly( ϵ -caprolactone) fabric.
    Kim HS; Um SH; Rhee SH
    J Biomater Sci Polym Ed; 2012; 23(10):1325-38. PubMed ID: 21722420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kerma coefficients for neutron scattering on 12C and 16O at 96 MeV.
    Mermod P; Blomgren J; Nilsson L; Pomp S; Ohrn A; Osterlund M; Prokofiev A; Tippawan U
    Radiat Prot Dosimetry; 2007; 126(1-4):113-8. PubMed ID: 17575301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite.
    Dahm S; Risnes S
    Calcif Tissue Int; 1999 Dec; 65(6):459-65. PubMed ID: 10594165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.