BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 10832641)

  • 21. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630.
    Chen Y; Ding Y; Yang L; Yu J; Liu G; Wang X; Zhang S; Yu D; Song L; Zhang H; Zhang C; Huo L; Huo C; Wang Y; Du Y; Zhang H; Zhang P; Na H; Xu S; Zhu Y; Xie Z; He T; Zhang Y; Wang G; Fan Z; Yang F; Liu H; Wang X; Zhang X; Zhang MQ; Li Y; Steinbüchel A; Fujimoto T; Cichello S; Yu J; Liu P
    Nucleic Acids Res; 2014 Jan; 42(2):1052-64. PubMed ID: 24150943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.
    Hetzler S; Bröker D; Steinbüchel A
    Appl Environ Microbiol; 2013 Sep; 79(17):5159-66. PubMed ID: 23793636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools.
    MacEachran DP; Sinskey AJ
    Microb Cell Fact; 2013 Nov; 12():104. PubMed ID: 24209886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.
    Wang B; Rezenom YH; Cho KC; Tran JL; Lee DG; Russell DH; Gill JJ; Young R; Chu KH
    Bioresour Technol; 2014 Jun; 161():162-70. PubMed ID: 24698742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MLDSR, the transcriptional regulator of the major lipid droplets protein MLDS, is controlled by long-chain fatty acids and contributes to the lipid-accumulating phenotype in oleaginous Rhodococcus strains.
    Hernández MA; Ledesma AE; Moncalián G; Alvarez HM
    FEBS J; 2024 Apr; 291(7):1457-1482. PubMed ID: 38135896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630.
    Zhang LS; Xu P; Chu MY; Zong MH; Yang JG; Lou WY
    World J Microbiol Biotechnol; 2019 Oct; 35(11):164. PubMed ID: 31637528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon source modify lipids composition of Rhodococcus opacus intended for infant formula.
    Zhang LS; Chu MY; Zong MH; Yang JG; Lou WY
    J Biotechnol; 2020 Aug; 319():8-14. PubMed ID: 32470464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhodococcus bacteria as a promising source of oils from olive mill wastes.
    Herrero OM; Villalba MS; Lanfranconi MP; Alvarez HM
    World J Microbiol Biotechnol; 2018 Jul; 34(8):114. PubMed ID: 29992446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MALDI-TOF/MS fingerprinting of triacylglycerols (TAGs) in olive oils produced in the Israeli Negev desert.
    Chapagain BP; Wiesman Z
    J Agric Food Chem; 2009 Feb; 57(4):1135-42. PubMed ID: 19199592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 31. The genus Dracunculus--a source of triacylglycerols containing odd-numbered ω-phenyl fatty acids.
    Rezanka T; Schreiberová O; Cejková A; Sigler K
    Phytochemistry; 2011 Oct; 72(14-15):1914-26. PubMed ID: 21601894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RP-HPLC/MS-APCI analysis of odd-chain TAGs from Rhodococcus erythropolis including some regioisomers.
    Rezanka T; Schreiberová O; Krulikovská T; Masák J; Sigler K
    Chem Phys Lipids; 2010 May; 163(4-5):373-80. PubMed ID: 20138031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triacylglycerols in prokaryotic microorganisms.
    Alvarez HM; Steinbüchel A
    Appl Microbiol Biotechnol; 2002 Dec; 60(4):367-76. PubMed ID: 12466875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.
    Hernández MA; Comba S; Arabolaza A; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2191-207. PubMed ID: 25213912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste.
    Castro AR; Guimarães M; Oliveira JV; Pereira MA
    Sci Total Environ; 2017 Dec; 605-606():677-682. PubMed ID: 28675877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels.
    Kurosawa K; Radek A; Plassmeier JK; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():31. PubMed ID: 25763105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress.
    Alvarez HM; Silva RA; Cesari AC; Zamit AL; Peressutti SR; Reichelt R; Keller U; Malkus U; Rasch C; Maskow T; Mayer F; Steinbüchel A
    FEMS Microbiol Ecol; 2004 Nov; 50(2):75-86. PubMed ID: 19712366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of castor oil by on-line and off-line non-aqueous reverse-phase high-performance liquid chromatography-mass spectrometry (APCI and UV/MALDI).
    Stübiger G; Pittenauer E; Allmaier G
    Phytochem Anal; 2003; 14(6):337-46. PubMed ID: 14667059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative quantitative fatty acid analysis of triacylglycerols using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and gas chromatography.
    Hlongwane C; Delves IG; Wan LW; Ayorinde FO
    Rapid Commun Mass Spectrom; 2001; 15(21):2027-34. PubMed ID: 11675670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing lipid production using an NADP
    Hernández MA; Alvarez HM
    Microbiology (Reading); 2019 Jan; 165(1):4-14. PubMed ID: 30372408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.