BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 10832641)

  • 41. Improved site-specific mutagenesis in Rhodococcus opacus using a novel conditional suicide plasmid.
    Jain G; Ertesvåg H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7129-7138. PubMed ID: 36194264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.
    DeLorenzo DM; Henson WR; Moon TS
    ACS Synth Biol; 2017 Oct; 6(10):1973-1978. PubMed ID: 28745867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of fatty acid profiles and TAGs in vegetable oils by MALDI-TOF/MS fingerprinting.
    Wiesman Z; Chapagain BP
    Methods Mol Biol; 2009; 579():315-36. PubMed ID: 19763483
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1.
    Dávila Costa JS; Herrero OM; Alvarez HM; Leichert L
    Microbiology (Reading); 2015 Mar; 161(Pt 3):593-610. PubMed ID: 25564499
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights into the Metabolism of Oleaginous
    Alvarez HM; Herrero OM; Silva RA; Hernández MA; Lanfranconi MP; Villalba MS
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31324625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel HPLC-ESI-Q-ToF approach for the determination of fatty acids and acylglycerols in food samples.
    La Nasa J; Degano I; Brandolini L; Modugno F; Bonaduce I
    Anal Chim Acta; 2018 Jul; 1013():98-109. PubMed ID: 29501097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RP-HPLC/MS-APCI analysis of branched chain TAG prepared by precursor-directed biosynthesis with Rhodococcus erythropolis.
    Schreiberová O; Krulikovská T; Sigler K; Cejková A; Rezanka T
    Lipids; 2010 Aug; 45(8):743-56. PubMed ID: 20635225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomass and lipid production by Rhodococcus opacus PD630 in molasses-based media with and without osmotic-stress.
    Saisriyoot M; Thanapimmetha A; Suwaleerat T; Chisti Y; Srinophakun P
    J Biotechnol; 2019 May; 297():1-8. PubMed ID: 30853637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Wewetzer SJ; Sinskey AJ
    Biotechnol Biofuels; 2013 Sep; 6(1):134. PubMed ID: 24041310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630.
    Janßen HJ; Ibrahim MH; Bröker D; Steinbüchel A
    AMB Express; 2013; 3():38. PubMed ID: 23855965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.
    Shinn S; Liyanage R; Lay J; Proctor A
    J Agric Food Chem; 2014 Jul; 62(28):6608-15. PubMed ID: 24882168
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of triacylglycerol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the toluene-degrading bacterium Rhodococcus aetherivorans IAR1.
    Hori K; Abe M; Unno H
    J Biosci Bioeng; 2009 Oct; 108(4):319-24. PubMed ID: 19716522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of the structures of triacylglycerols from native and transgenic medium-chain fatty acid-enriched rape seed oil by liquid chromatography--atmospheric pressure chemical ionization ion-trap mass spectrometry (LC-APCI-ITMS).
    Beermann C; Winterling N; Green A; Möbius M; Schmitt JJ; Boehm G
    Lipids; 2007 Apr; 42(4):383-94. PubMed ID: 17406932
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family.
    Nguyen T; Aparicio M; Saleh MA
    Molecules; 2015 Dec; 20(12):21421-32. PubMed ID: 26633337
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tuning culturing conditions towards the production of neutral lipids from lubricant-based wastewater in open mixed bacterial communities.
    Castro AR; Silva PTS; Castro PJG; Alves E; Domingues MRM; Pereira MA
    Water Res; 2018 Nov; 144():532-542. PubMed ID: 30081335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioconversion of lignin model compounds with oleaginous Rhodococci.
    Kosa M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):891-900. PubMed ID: 22159607
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting.
    Saraiva SA; Cabral EC; Eberlin MN; Catharino RR
    J Agric Food Chem; 2009 May; 57(10):4030-4. PubMed ID: 19358529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins.
    Hänisch J; Wältermann M; Robenek H; Steinbüchel A
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3271-3280. PubMed ID: 17074898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.