These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 10832889)
1. Enantiomeric separation of a group of chiral dihydropyridines by electrokinetic chromatography. García-Ruiz C; Marina ML Electrophoresis; 2000 May; 21(8):1565-73. PubMed ID: 10832889 [TBL] [Abstract][Full Text] [Related]
2. Fast enantiomeric separation of basis drugs by electrokinetic chromatography. Application to the quantitation of terbutaline in a pharmaceutical preparation. García-Ruiz C; Marina ML Electrophoresis; 2001 Sep; 22(15):3191-7. PubMed ID: 11589279 [TBL] [Abstract][Full Text] [Related]
3. Separation of neutral dihydropyridines and their enantiomers using electrokinetic chromatography. Van Eeckhaut A; Detaevernier MR; Michotte Y J Pharm Biomed Anal; 2004 Nov; 36(4):799-805. PubMed ID: 15533673 [TBL] [Abstract][Full Text] [Related]
4. Enantiomeric separation of amino acids derivatized with fluoresceine isothiocyanate isomer I by micellar electrokinetic chromatography using beta- and gamma-cyclodextrins as chiral selectors. Jin LJ; Rodriguez I; Li SF Electrophoresis; 1999 Jun; 20(7):1538-45. PubMed ID: 10424478 [TBL] [Abstract][Full Text] [Related]
5. Chiral separation of polychlorinated biphenyls using a combination of hydroxypropyl-gamma-cyclodextrin and a polymeric chiral surfactant. Edwards SH; Shamsi SA Electrophoresis; 2002 May; 23(9):1320-7. PubMed ID: 12007133 [TBL] [Abstract][Full Text] [Related]
6. Enantiomeric separation of bupropion enantiomers by electrokinetic chromatography: quantitative analysis in pharmaceutical formulations. Castro-Puyana M; García MA; Marina ML J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(1):260-5. PubMed ID: 18823826 [TBL] [Abstract][Full Text] [Related]
7. Fast enantiomeric separation of uniconazole and diniconazole by electrokinetic chromatography using an anionic cyclodextrin: application to the determination of analyte-selector apparent binding constants for enantiomers. Martín-Biosca Y; García-Ruiz C; Marina ML Electrophoresis; 2000 Sep; 21(15):3240-8. PubMed ID: 11001222 [TBL] [Abstract][Full Text] [Related]
8. Chiral separation of anionic and neutral compounds using a hepta-substituted cationic beta-cyclodextrin as a chiral selector in capillary electrophoresis. Lee D; Shamsi SA Electrophoresis; 2002 May; 23(9):1314-9. PubMed ID: 12007132 [TBL] [Abstract][Full Text] [Related]
9. Rapid enantiomeric separation of polychlorinated biphenyls by electrokinetic chromatography using mixtures of neutral and charged cyclodextrin derivatives. García-Ruiz C; Martín-Biosca Y; Crego AL; Marina ML J Chromatogr A; 2001 Feb; 910(1):157-64. PubMed ID: 11263569 [TBL] [Abstract][Full Text] [Related]
10. Comparison of charged cyclodextrin derivatives for the chiral separation of atropisomeric polychlorinated biphenyls by capillary electrophoresis. García-Ruiz C; Crego AL; Marina ML Electrophoresis; 2003 Aug; 24(15):2657-64. PubMed ID: 12900879 [TBL] [Abstract][Full Text] [Related]
11. Enantiomeric separation of chiral phenoxy acid herbicides by electrokinetic chromatography. Application to the determination of analyte-selector apparent binding constants for enantiomers. Martín-Biosca Y; García-Ruiz C; Marina ML Electrophoresis; 2001 Sep; 22(15):3216-25. PubMed ID: 11589282 [TBL] [Abstract][Full Text] [Related]
12. Enantioseparation of dihydropyridine derivatives by means of neutral and negatively charged beta-cyclodextrin derivatives using capillary electrophoresis. Christians T; Holzgrabe U Electrophoresis; 2000 Nov; 21(17):3609-17. PubMed ID: 11271478 [TBL] [Abstract][Full Text] [Related]
13. Optimised separation of endogenous urinary components using cyclodextrin-modified micellar electrokinetic capillary chromatography. Alfazema LN; Howells S; Perrett D Electrophoresis; 2000 Jul; 21(12):2503-8. PubMed ID: 10939465 [TBL] [Abstract][Full Text] [Related]
14. The use of a highly sulfated cyclodextrin for the simultaneous chiral separation of amphetamine-type stimulants by capillary electrophoresis. Iwata YT; Garcia A; Kanamori T; Inoue H; Kishi T; Lurie IS Electrophoresis; 2002 May; 23(9):1328-34. PubMed ID: 12007134 [TBL] [Abstract][Full Text] [Related]
15. Separation of some chiral flavanones by micellar electrokinetic chromatography. Asztemborska M; Miśkiewicz M; Sybilska D Electrophoresis; 2003 Aug; 24(15):2527-31. PubMed ID: 12900864 [TBL] [Abstract][Full Text] [Related]
16. Chiral separation of vinpocetine using cyclodextrin-modified micellar electrokinetic chromatography. Wan Ibrahim WA; Abd Wahib SM; Hermawan D; Sanagi MM; Aboul-Enein HY Chirality; 2012 Mar; 24(3):252-4. PubMed ID: 22271616 [TBL] [Abstract][Full Text] [Related]
17. Chiral separation of amino acid esters by micellar electrokinetic chromatography. Salami M; Otto HH; Jira T Electrophoresis; 2001 Sep; 22(15):3291-6. PubMed ID: 11589293 [TBL] [Abstract][Full Text] [Related]
18. Separation of chiral amino acids by micellular electrokinetic chromatography with derivatized cyclodextrins. DeSilva K; Kuwana T Biomed Chromatogr; 1997; 11(4):230-5. PubMed ID: 9257000 [TBL] [Abstract][Full Text] [Related]
19. Enantiomeric separation of furan derivatives and fused polycycles by cyclodextrin-modified micellar capillary electrophoresis. Bao Y; Lantz AW; Yao T; Huang Q; Larock RC; Armstrong DW Electrophoresis; 2005 Nov; 26(21):4164-71. PubMed ID: 16252332 [TBL] [Abstract][Full Text] [Related]
20. Enantioseparation of chiral N-imidazole derivatives by electrokinetic chromatography using highly sulfated cyclodextrins: mechanism of enantioselective recognition. Danel C; Lipka E; Bonte JP; Goossens JF; Vaccher C; Foulon C Electrophoresis; 2005 Oct; 26(20):3824-32. PubMed ID: 16217831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]