BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 10833402)

  • 1. Folding and structural characterization of highly disulfide-bonded beetle antifreeze protein produced in bacteria.
    Liou YC; Daley ME; Graham LA; Kay CM; Walker VK; Sykes BD; Davies PL
    Protein Expr Purif; 2000 Jun; 19(1):148-57. PubMed ID: 10833402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of a folded and functional, highly disulfide-bonded beta-helix antifreeze protein in bacteria.
    Bar M; Bar-Ziv R; Scherf T; Fass D
    Protein Expr Purif; 2006 Aug; 48(2):243-52. PubMed ID: 16542851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of disulfide bridges in antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis.
    Li N; Chibber BA; Castellino FJ; Duman JG
    Biochemistry; 1998 May; 37(18):6343-50. PubMed ID: 9572849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor.
    Liou YC; Thibault P; Walker VK; Davies PL; Graham LA
    Biochemistry; 1999 Aug; 38(35):11415-24. PubMed ID: 10471292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function.
    Ivanenkov VV; Murphy-Piedmonte DM; Kirley TL
    Biochemistry; 2003 Oct; 42(40):11726-35. PubMed ID: 14529283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein.
    Gauthier SY; Kay CM; Sykes BD; Walker VK; Davies PL
    Eur J Biochem; 1998 Dec; 258(2):445-53. PubMed ID: 9874210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional surface display of functional groups on a beta-helical antifreeze protein scaffold.
    Bar M; Scherf T; Fass D
    Protein Eng Des Sel; 2008 Feb; 21(2):107-14. PubMed ID: 18222928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the underlying cause of diversity of the disulfide folding pathway.
    Chang JY
    Biochemistry; 2004 Apr; 43(15):4522-9. PubMed ID: 15078098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human recombinant resistin protein displays a tendency to aggregate by forming intermolecular disulfide linkages.
    Aruna B; Ghosh S; Singh AK; Mande SC; Srinivas V; Chauhan R; Ehtesham NZ
    Biochemistry; 2003 Sep; 42(36):10554-9. PubMed ID: 12962478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the disulfide bonds of recombinant murine interleukin-6 induces formation of a partially unfolded state.
    Zhang JG; Matthews JM; Ward LD; Simpson RJ
    Biochemistry; 1997 Mar; 36(9):2380-9. PubMed ID: 9054543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix.
    Lin FH; Davies PL; Graham LA
    Biochemistry; 2011 May; 50(21):4467-78. PubMed ID: 21486083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of disulfide peptide mapping and determination of disulfide structure of recombinant human osteoprotegerin chimera produced in Escherichia coli.
    Merewether LA; Le J; Jones MD; Lee R; Shimamoto G; Lu HS
    Arch Biochem Biophys; 2000 Mar; 375(1):101-10. PubMed ID: 10683254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary structure of antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis.
    Li N; Kendrick BS; Manning MC; Carpenter JF; Duman JG
    Arch Biochem Biophys; 1998 Dec; 360(1):25-32. PubMed ID: 9826425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding and oxidation of the antibody domain C(H)3.
    Thies MJ; Talamo F; Mayer M; Bell S; Ruoppolo M; Marino G; Buchner J
    J Mol Biol; 2002 Jun; 319(5):1267-77. PubMed ID: 12079363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native and non-native structure in a protein-folding intermediate: spectroscopic studies of partially reduced IGF-I and an engineered alanine model.
    Hua QX; Narhi L; Jia W; Arakawa T; Rosenfeld R; Hawkins N; Miller JA; Weiss MA
    J Mol Biol; 1996 Jun; 259(2):297-313. PubMed ID: 8656430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze.
    Chao H; Hodges RS; Kay CM; Gauthier SY; Davies PL
    Protein Sci; 1996 Jun; 5(6):1150-6. PubMed ID: 8762146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of disulfide bonds for the structure and folding of proguanylin.
    Lauber T; Schulz A; Rösch P; Marx UC
    Biochemistry; 2004 Aug; 43(31):10050-7. PubMed ID: 15287732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone structure and dynamics of a hemolymph protein from the mealworm beetle Tenebrio molitor.
    Rothemund S; Liou YC; Davies PL; Sönnichsen FD
    Biochemistry; 1997 Nov; 36(45):13791-801. PubMed ID: 9374855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast.
    Tyshenko MG; d'Anjou M; Davies PL; Daugulis AJ; Walker VK
    Protein Expr Purif; 2006 May; 47(1):152-61. PubMed ID: 16290006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.