BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 10833427)

  • 1. Functional expression of the pore forming subunit of the ATP-sensitive potassium channel in Saccharomyces cerevisiae.
    Graves FM; Tinker A
    Biochem Biophys Res Commun; 2000 Jun; 272(2):403-9. PubMed ID: 10833427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast.
    Schwarzer S; Kolacna L; Lichtenberg-Fraté H; Sychrova H; Ludwig J
    FEMS Yeast Res; 2008 May; 8(3):405-13. PubMed ID: 18248412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression of K+ channels in Saccharomyces cerevisiae: strategies for molecular analysis of structure and function.
    Anderson JA; Nakamura RL; Gaber RF
    Symp Soc Exp Biol; 1994; 48():85-97. PubMed ID: 7597651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the mKir2.1 channel activity in potassium influx defective Saccharomyces cerevisiae strains determined as changes in growth characteristics.
    Hasenbrink G; Schwarzer S; Kolacna L; Ludwig J; Sychrova H; Lichtenberg-Fraté H
    FEBS Lett; 2005 Mar; 579(7):1723-31. PubMed ID: 15757667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits.
    Cui Y; Giblin JP; Clapp LH; Tinker A
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):729-34. PubMed ID: 11136227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and functional characterization of a superfamily of microbial inwardly rectifying potassium channels.
    Sun S; Gan JH; Paynter JJ; Tucker SJ
    Physiol Genomics; 2006 Jun; 26(1):1-7. PubMed ID: 16595742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the molecular composition of K(ATP) channels more complex than originally thought?
    Pountney DJ; Sun ZQ; Porter LM; Nitabach MN; Nakamura TY; Holmes D; Rosner E; Kaneko M; Manaris T; Holmes TC; Coetzee WA
    J Mol Cell Cardiol; 2001 Aug; 33(8):1541-6. PubMed ID: 11448141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels.
    Light PE; Bladen C; Winkfein RJ; Walsh MP; French RJ
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9058-63. PubMed ID: 10908656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of microphysiometry for analysis of heterologous ion channels expressed in yeast.
    Hahnenberger KM; Krystal M; Esposito K; Tang W; Kurtz S
    Nat Biotechnol; 1996 Jul; 14(7):880-3. PubMed ID: 9631015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory modulation of ATP-sensitive potassium channels by gallate-ester moiety of (-)-epigallocatechin-3-gallate.
    Baek WK; Jang BC; Lim JH; Kwon TK; Lee HY; Cho CH; Kim DK; Shin DH; Park JG; Lim JG; Bae JH; Bae JH; Yoo SK; Park WK; Song DK
    Biochem Pharmacol; 2005 Nov; 70(11):1560-7. PubMed ID: 16216226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New phenotypes of functional expression of the mKir2.1 channel in potassium efflux-deficient Saccharomyces cerevisiae strains.
    Kolacna L; Zimmermannova O; Hasenbrink G; Schwarzer S; Ludwig J; Lichtenberg-Fraté H; Sychrova H
    Yeast; 2005 Dec; 22(16):1315-23. PubMed ID: 16358319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional expression of a vertebrate inwardly rectifying K+ channel in yeast.
    Tang W; Ruknudin A; Yang WP; Shaw SY; Knickerbocker A; Kurtz S
    Mol Biol Cell; 1995 Sep; 6(9):1231-40. PubMed ID: 8534918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2.
    Raab-Graham KF; Vandenberg CA
    J Biol Chem; 1998 Jul; 273(31):19699-707. PubMed ID: 9677399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox.
    Mackie TD; Brodsky JL
    Genetics; 2018 Jul; 209(3):637-650. PubMed ID: 29967058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteromeric channel formation and Ca(2+)-free media reduce the toxic effect of the weaver Kir 3.2 allele.
    Tucker SJ; Pessia M; Moorhouse AJ; Gribble F; Ashcroft FM; Maylie J; Adelman JP
    FEBS Lett; 1996 Jul; 390(3):253-7. PubMed ID: 8706871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPM motifs of the yeast SKT protein Trk1 can assemble to form a functional K
    Shamayeva K; Spurna K; Kulik N; Kale D; Munko O; Spurny P; Zayats V; Ludwig J
    Biochim Biophys Acta Biomembr; 2021 Feb; 1863(2):183513. PubMed ID: 33245894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of yeast proteins necessary for cell-surface function of a potassium channel.
    Haass FA; Jonikas M; Walter P; Weissman JS; Jan YN; Jan LY; Schuldiner M
    Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18079-84. PubMed ID: 17989219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations.
    Bertl A; Ramos J; Ludwig J; Lichtenberg-Fraté H; Reid J; Bihler H; Calero F; Martínez P; Ljungdahl PO
    Mol Microbiol; 2003 Feb; 47(3):767-80. PubMed ID: 12535075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.