These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10834155)

  • 21. A new drift-flux model for particle transport and deposition in human airways.
    Wang JB; Lai AC
    J Biomech Eng; 2006 Feb; 128(1):97-105. PubMed ID: 16532622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics.
    van Ertbruggen C; Hirsch C; Paiva M
    J Appl Physiol (1985); 2005 Mar; 98(3):970-80. PubMed ID: 15501925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods.
    Farkas A; Balásházy I; Szocs K
    J Aerosol Med; 2006; 19(3):329-43. PubMed ID: 17034308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted drug aerosol deposition analysis for a four-generation lung airway model with hemispherical tumors.
    Kleinstreuer C; Zhang Z
    J Biomech Eng; 2003 Apr; 125(2):197-206. PubMed ID: 12751281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract.
    Nordlund M; Belka M; Kuczaj AK; Lizal F; Jedelsky J; Elcner J; Jicha M; Sauser Y; Le Bouhellec S; Cosandey S; Majeed S; Vuillaume G; Peitsch MC; Hoeng J
    Inhal Toxicol; 2017 Feb; 29(3):113-125. PubMed ID: 28470142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle and inhalation exposure in human and monkey computational airway models.
    Lu Phuong N; Dang Khoa N; Inthavong K; Ito K
    Inhal Toxicol; 2018; 30(11-12):416-428. PubMed ID: 30618352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree.
    Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T
    J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local particle deposition patterns may play a key role in the development of lung cancer.
    Balashazy I; Hofmann W; Heistracher T
    J Appl Physiol (1985); 2003 May; 94(5):1719-25. PubMed ID: 12533493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.
    Isaacs KK; Schlesinger RB; Martonen TB
    J Aerosol Med; 2006; 19(3):344-52. PubMed ID: 17034309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and deposition of ultrafine particles in the upper tracheobronchial tree: a comparative study between approximate and realistic respiratory tract models.
    Dong J; Li J; Tian L; Tu J
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1125-1135. PubMed ID: 33410725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerosol particle deposition and distribution in bifurcating ventilation ducts.
    Miguel AF; Reis AH; Aydin M
    J Hazard Mater; 2004 Dec; 116(3):249-55. PubMed ID: 15601618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges in validating CFD-derived inhaled aerosol deposition predictions.
    Oldham MJ
    Inhal Toxicol; 2006 Sep; 18(10):781-6. PubMed ID: 16774867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deposition and dispersion of aerosols in the airways of the human respiratory tract: the effect of particle size.
    Scheuch G; Stahlhofen W
    Exp Lung Res; 1992; 18(3):343-58. PubMed ID: 1628567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition.
    Sommerfeld M; Sgrott OL; Taborda MA; Koullapis P; Bauer K; Kassinos S
    Eur J Pharm Sci; 2021 Nov; 166():105959. PubMed ID: 34324962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes.
    Lalas A; Nousias S; Kikidis D; Lalos A; Arvanitis G; Sougles C; Moustakas K; Votis K; Verbanck S; Usmani O; Tzovaras D
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):173. PubMed ID: 29297393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of bronchial mucociliary clearance of insoluble particles by computational fluid and particle dynamics methods.
    Farkas A; Szöke I
    Inhal Toxicol; 2013 Aug; 25(10):593-605. PubMed ID: 23937417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of inlet velocity profile on the bifurcation COPD airway flow.
    Yang XL; Liu Y; So RM; Yang JM
    Comput Biol Med; 2006 Feb; 36(2):181-94. PubMed ID: 16389077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational flow and aerosol concentration profiles in lung bifurcations.
    Kinsara AA; Tompson RV; Loyalka SK
    Health Phys; 1993 Jan; 64(1):13-22. PubMed ID: 8416210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.