BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 10834160)

  • 1. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model.
    Fortin M; Soulhat J; Shirazi-Adl A; Hunziker EB; Buschmann MD
    J Biomech Eng; 2000 Apr; 122(2):189-95. PubMed ID: 10834160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The asymmetry of transient response in compression versus release for cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2001 Oct; 123(5):519-22. PubMed ID: 11601739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model.
    Li LP; Soulhat J; Buschmann MD; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 1999 Nov; 14(9):673-82. PubMed ID: 10521652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fibril-network-reinforced biphasic model of cartilage in unconfined compression.
    Soulhat J; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 1999 Jun; 121(3):340-7. PubMed ID: 10396701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing strain and strain rate strengthen transient stiffness but weaken the response to subsequent compression for articular cartilage in unconfined compression.
    Langelier E; Buschmann MD
    J Biomech; 2003 Jun; 36(6):853-9. PubMed ID: 12742453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-rate dependent stiffness of articular cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2003 Apr; 125(2):161-8. PubMed ID: 12751277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage.
    Korhonen RK; Laasanen MS; Töyräs J; Lappalainen R; Helminen HJ; Jurvelin JS
    J Biomech; 2003 Sep; 36(9):1373-9. PubMed ID: 12893046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates.
    DiSilvestro MR; Zhu Q; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.
    Li L; Shirazi-Adl A; Buschmann MD
    Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech; 2000 Dec; 33(12):1533-41. PubMed ID: 11006376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined compression of articular cartilage: linearity in ramp and sinusoidal tests and the importance of interdigitation and incomplete confinement.
    Buschmann MD; Soulhat J; Shirazi-Adl A; Jurvelin JS; Hunziker EB
    J Biomech; 1998 Feb; 31(2):171-8. PubMed ID: 9593212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of fibril reinforcement in the mechanical behavior of cartilage.
    Li L; Buschmann MD; Shirazi-Adl A
    Biorheology; 2002; 39(1-2):89-96. PubMed ID: 12082271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.
    Mäkelä JTA; Korhonen RK
    J Biomech; 2016 Jun; 49(9):1734-1741. PubMed ID: 27130474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage.
    Démarteau O; Pillet L; Inaebnit A; Borens O; Quinn TM
    Osteoarthritis Cartilage; 2006 Jun; 14(6):589-96. PubMed ID: 16478669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streaming potentials maps are spatially resolved indicators of amplitude, frequency and ionic strength dependant responses of articular cartilage to load.
    Garon M; Légaré A; Guardo R; Savard P; Buschmann MD
    J Biomech; 2002 Feb; 35(2):207-16. PubMed ID: 11784539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.