BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10834201)

  • 1. Experiments showing that electromagnetic fields can be used to treat inflammatory diseases.
    Nindl G; Balcavage WX; Vesper DN; Swez JA; Wetzel BJ; Chamberlain JK; Fox MT
    Biomed Sci Instrum; 2000; 36():7-13. PubMed ID: 10834201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro.
    Johnson MT; Vanscoy-Cornett A; Vesper DN; Swez JA; Chamberlain JK; Seaward MB; Nindl G
    Biomed Sci Instrum; 2001; 37():215-20. PubMed ID: 11347391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic field effects: changes in protein phosphorylation in the Jurkat E6.1 cell line.
    Wetzel BJ; Nindl G; Vesper DN; Swez JA; Jasti AC; Johnson MT
    Biomed Sci Instrum; 2001; 37():203-8. PubMed ID: 11347389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive treatment of inflammation using electromagnetic fields: current and emerging therapeutic potential.
    Johnson MT; Waite LR; Nindl G
    Biomed Sci Instrum; 2004; 40():469-74. PubMed ID: 15134003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ultraviolet B radiation and 100 Hz electromagnetic fields on proliferation and DNA synthesis of Jurkat cells.
    Nindl G; Hughes EF; Johnson MT; Spandau DF; Vesper DN; Balcavage WX
    Bioelectromagnetics; 2002 Sep; 23(6):455-63. PubMed ID: 12210564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells.
    Delle Monache S; Alessandro R; Iorio R; Gualtieri G; Colonna R
    Bioelectromagnetics; 2008 Dec; 29(8):640-8. PubMed ID: 18512694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated sister chromatid exchange frequencies in dividing human peripheral blood lymphocytes exposed to 50 Hz magnetic fields.
    Wahab MA; Podd JV; Rapley BI; Rowland RE
    Bioelectromagnetics; 2007 May; 28(4):281-8. PubMed ID: 17080456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The research progress of using electromagnetic technology in treatment of bone diseases].
    Guan Z; Long Y; Cai G; Yang B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):226-30. PubMed ID: 12557786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute effects of 60-Hz electromagnetic fields on ex vivo murine lymphocyte and macrophage functions, and in vitro tumor cell growth.
    Jacobi-Elizondo JS; Gómez-Flores R; Tamez-Guerra R; Rodríguez-Padilla C; Heredia-Rojas JA
    Rev Latinoam Microbiol; 2001; 43(3):130-4. PubMed ID: 17061499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation.
    Simkó M; Mattsson MO
    J Cell Biochem; 2004 Sep; 93(1):83-92. PubMed ID: 15352165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenicity and toxicity of electromagnetic fields.
    Fiorio R; Morichetti E; Vellosi R; Bronzetti G
    J Environ Pathol Toxicol Oncol; 1993; 12(3):139-42. PubMed ID: 8189366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field.
    Lindström E; Lindström P; Berglund A; Mild KH; Lundgren E
    J Cell Physiol; 1993 Aug; 156(2):395-8. PubMed ID: 8344993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields.
    Ivancsits S; Pilger A; Diem E; Jahn O; Rüdiger HW
    Mutat Res; 2005 Jun; 583(2):184-8. PubMed ID: 15899587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth stage dependent effects of electromagnetic fields on DNA synthesis of Jurkat cells.
    Nindl G; Swez JA; Miller JM; Balcavage WX
    FEBS Lett; 1997 Sep; 414(3):501-6. PubMed ID: 9323024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of different frequency electromagnetic fields on the differentiation of midbrain neural stem cells].
    Li Y; Zhao L; Xing X; Lou SJ; He C; Lu CL
    Space Med Med Eng (Beijing); 2002 Oct; 15(5):374-6. PubMed ID: 12449147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNFR1-induced sphingomyelinase activation modulates TCR signaling by impairing store-operated Ca2+ influx.
    Church LD; Hessler G; Goodall JE; Rider DA; Workman CJ; Vignali DA; Bacon PA; Gulbins E; Young SP
    J Leukoc Biol; 2005 Jul; 78(1):266-78. PubMed ID: 15817701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A system for simultaneous ultraviolet light and electromagnetic field exposure in in vitro experiments.
    Vesper DN; Nindl G; Johnson MT; Spandau DF; Swez JA; Balcavage WX
    Biomed Sci Instrum; 2001; 37():221-6. PubMed ID: 11347392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of extremely low frequency electromagnetic fields on distortion product otoacoustic emissions in rabbits.
    Budak B; Budak GG; Oztürk GG; Muluk NB; Apan A; Seyhan N
    Auris Nasus Larynx; 2009 Jun; 36(3):255-62. PubMed ID: 18606507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different extremely low-frequency electromagnetic fields on osteoblasts.
    Zhang X; Zhang J; Qu X; Wen J
    Electromagn Biol Med; 2007; 26(3):167-77. PubMed ID: 17886004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells.
    Chang K; Chang WH; Wu ML; Shih C
    Bioelectromagnetics; 2003 Sep; 24(6):431-9. PubMed ID: 12929162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.