These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10834381)

  • 1. Chloroperoxidase-mediated chlorination of aromatic groups in fulvic acid.
    Niedan V; Pavasars I; Oberg G
    Chemosphere; 2000 Sep; 41(5):779-85. PubMed ID: 10834381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago.
    Vázquez-Duhalt R; Ayala M; Márquez-Rocha FJ
    Phytochemistry; 2001 Nov; 58(6):929-33. PubMed ID: 11684191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors on the formation of disinfection by-products MX, DCA and TCA by chlorination of fulvic acid from lake sediments.
    Zhuo C; Chengyong Y; Junhe L; Huixian Z; Jinqi Z
    Chemosphere; 2001 Oct; 45(3):379-85. PubMed ID: 11592428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halogenation of estrogens catalysed by a fungal chloroperoxidase.
    Undiano E; Roman R; Miranda-Molina A; Ayala M
    Nat Prod Res; 2022 Oct; 36(20):5353-5357. PubMed ID: 34000929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chlorine isotope effect for enzyme-catalyzed chlorination.
    Reddy CM; Xu L; Drenzek NJ; Sturchio NC; Heraty LJ; Kimblin C; Butler A
    J Am Chem Soc; 2002 Dec; 124(49):14526-7. PubMed ID: 12465949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vanadium Chloroperoxidases: The Missing Link in the Formation of Chlorinated Compounds and Chloroform in the Terrestrial Environment?
    Wever R; Barnett P
    Chem Asian J; 2017 Aug; 12(16):1997-2007. PubMed ID: 28569439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process.
    Murali Manoj K
    Biochim Biophys Acta; 2006 Aug; 1764(8):1325-39. PubMed ID: 16870515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of oxidation on fulvic acids composition and biodegradability.
    Kozyatnyk I; Świetlik J; Raczyk-Stanisławiak U; Dąbrowska A; Klymenko N; Nawrocki J
    Chemosphere; 2013 Aug; 92(10):1335-42. PubMed ID: 23746389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of disinfection byproduct formation by molecular reconfiguration of the fulvic constituents of natural background organic matter.
    Weber WJ; Huang Q; Pinto RA
    Environ Sci Technol; 2005 Sep; 39(17):6446-52. PubMed ID: 16190198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselectivity of chloroperoxidase-dependent halogenation.
    Ramakrishnan K; Oppenhuizen ME; Saunders S; Fisher J
    Biochemistry; 1983 Jun; 22(13):3271-7. PubMed ID: 6882748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitating direct chlorine transfer from enzyme to substrate in chloroperoxidase-catalyzed reactions.
    Libby RD; Beachy TM; Phipps AK
    J Biol Chem; 1996 Sep; 271(36):21820-7. PubMed ID: 8702981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroperoxidase from Streptomyces lividans: isolation and characterization of the enzyme and the corresponding gene.
    Bantleon R; Altenbuchner J; van Pée KH
    J Bacteriol; 1994 Apr; 176(8):2339-47. PubMed ID: 8157602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cl K-edge X-ray spectroscopic investigation of enzymatic formation of organochlorines in weathering plant material.
    Reina RG; Leri AC; Myneni SC
    Environ Sci Technol; 2004 Feb; 38(3):783-9. PubMed ID: 14968865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorine isotope effects and composition of naturally produced organochlorines from chloroperoxidases, flavin-dependent halogenases, and in forest soil.
    Aeppli C; Bastviken D; Andersson P; Gustafsson O
    Environ Sci Technol; 2013 Jul; 47(13):6864-71. PubMed ID: 23320408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of chlorination by chloroperoxidase.
    Dunford HB; Lambeir AM; Kashem MA; Pickard M
    Arch Biochem Biophys; 1987 Jan; 252(1):292-302. PubMed ID: 3028259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and efficient degradation of bisphenol A by chloroperoxidase from Caldariomyces fumago: product analysis and ecotoxicity evaluation of the degraded solution.
    Dong X; Li H; Jiang Y; Hu M; Li S; Zhai Q
    Biotechnol Lett; 2016 Sep; 38(9):1483-91. PubMed ID: 27262295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation.
    Liu H; Zhao H; Quan X; Zhang Y; Chen S
    Environ Sci Technol; 2009 Oct; 43(20):7712-7. PubMed ID: 19921883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the role of glutamic acid 183 in chloroperoxidase catalysis.
    Yi X; Conesa A; Punt PJ; Hager LP
    J Biol Chem; 2003 Apr; 278(16):13855-9. PubMed ID: 12576477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.
    Müller G
    Chemosphere; 2003 Jul; 52(2):371-9. PubMed ID: 12738259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.