These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10835108)

  • 1. Structure of the Malpha2-3 toxin alpha antibody-antigen complex: combination of modelling with functional mapping experimental results.
    Tenette-Souaille C; Smith JC
    Protein Eng; 2000 May; 13(5):345-51. PubMed ID: 10835108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicry between receptors and antibodies. Identification of snake toxin determinants recognized by the acetylcholine receptor and an acetylcholine receptor-mimicking monoclonal antibody.
    Ducancel F; Mérienne K; Fromen-Romano C; Trémeau O; Pillet L; Drevet P; Zinn-Justin S; Boulain JC; Ménez A
    J Biol Chem; 1996 Dec; 271(49):31345-53. PubMed ID: 8940141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural modeling of the complex between an acetylcholine receptor-mimicking antibody and its snake toxin antigen.
    Tenette-Souaille C; Smith JC
    Proteins; 1998 Feb; 30(3):249-63. PubMed ID: 9517541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural model of the anti-snake-toxin antibody, M alpha 2,3.
    Tenette C; Ducancel F; Smith JC
    Proteins; 1996 Sep; 26(1):9-31. PubMed ID: 8880926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and structural basis of the specificity of a neutralizing acetylcholine receptor-mimicking antibody, using combined mutational and molecular modeling analyses.
    Germain N; Mérienne K; Zinn-Justin S; Boulain JC; Ducancel F; Ménez A
    J Biol Chem; 2000 Jul; 275(28):21578-86. PubMed ID: 10748046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The third-dimensional structure of the complex between an Fv antibody fragment and an analogue of the main immunogenic region of the acetylcholine receptor: a combined two-dimensional NMR, homology, and molecular modeling approach.
    Kleinjung J; Petit MC; Orlewski P; Mamalaki A; Tzartos SJ; Tsikaris V; Sakarellos-Daitsiotis M; Sakarellos C; Marraud M; Cung MT
    Biopolymers; 2000 Feb; 53(2):113-28. PubMed ID: 10679615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of antibody hypervariable loops reproduced by a conformational search algorithm.
    Bruccoleri RE; Haber E; Novotný J
    Nature; 1988 Oct; 335(6190):564-8. PubMed ID: 3419534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the Fab fragment of a rat monoclonal antibody against the main immunogenic region of the human muscle acetylcholine receptor.
    Kontou M; Leonidas DD; Vatzaki EH; Tsantili P; Mamalaki A; Oikonomakos NG; Acharya KR; Tzartos SJ
    Eur J Biochem; 2000 Apr; 267(8):2389-97. PubMed ID: 10759865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling antibody combining sites: a review.
    Thornton JM
    Ciba Found Symp; 1991; 159():55-69; discussion 69-71. PubMed ID: 1959453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detailed analysis of the free and bound conformations of an antibody. X-ray structures of Fab 17/9 and three different Fab-peptide complexes.
    Schulze-Gahmen U; Rini JM; Wilson IA
    J Mol Biol; 1993 Dec; 234(4):1098-118. PubMed ID: 8263915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure.
    Chothia C; Lesk AM; Levitt M; Amit AG; Mariuzza RA; Phillips SE; Poljak RJ
    Science; 1986 Aug; 233(4765):755-8. PubMed ID: 3090684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced peptide conformations in different antibody complexes: molecular modeling of the three-dimensional structure of peptide-antibody complexes using NMR-derived distance restraints.
    Scherf T; Hiller R; Naider F; Levitt M; Anglister J
    Biochemistry; 1992 Aug; 31(30):6884-97. PubMed ID: 1379072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibody-specified B-cell epitope prediction in line with the principle of context-awareness.
    Zhao L; Wong L; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1483-94. PubMed ID: 21383422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-idiotypic and anti-anti-idiotypic responses to a monoclonal antibody directed to the acetylcholine receptor binding site of curaremimetic toxins.
    Pillet L; Charpentier I; Léonetti M; Ménez A
    Biochim Biophys Acta; 1992 Apr; 1138(4):282-9. PubMed ID: 1532909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm.
    Mayrose I; Shlomi T; Rubinstein ND; Gershoni JM; Ruppin E; Sharan R; Pupko T
    Nucleic Acids Res; 2007; 35(1):69-78. PubMed ID: 17151070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformations of the third hypervariable region in the VH domain of immunoglobulins.
    Morea V; Tramontano A; Rustici M; Chothia C; Lesk AM
    J Mol Biol; 1998 Jan; 275(2):269-94. PubMed ID: 9466909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range of CD4-Bound Conformations of HIV-1 gp120, as Defined Using Conditional CD4-Induced Antibodies.
    Kaplan G; Roitburd-Berman A; Lewis GK; Gershoni JM
    J Virol; 2016 May; 90(9):4481-4493. PubMed ID: 26889042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitope mapping by antibody competition. Methodology and Evaluation of the validity of the technique.
    Tzartos SJ
    Methods Mol Biol; 1996; 66():55-66. PubMed ID: 8959704
    [No Abstract]   [Full Text] [Related]  

  • 19. Main immunogenic region of Torpedo electroplax and human muscle acetylcholine receptor: localization and microheterogeneity revealed by the use of synthetic peptides.
    Tzartos SJ; Loutrari HV; Tang F; Kokla A; Walgrave SL; Milius RP; Conti-Tronconi BM
    J Neurochem; 1990 Jan; 54(1):51-61. PubMed ID: 1688377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoclonal antibodies to scorpion toxins. Characterization and molecular mechanisms of neutralization.
    Bahraoui E; Pichon J; Muller JM; Darbon H; Elayeb M; Granier C; Marvaldi J; Rochat H
    J Immunol; 1988 Jul; 141(1):214-20. PubMed ID: 2454259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.