These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10835242)

  • 1. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs.
    Young TJ; Mawson S; Johnston KP; Henriksen IB; Pace GW; Mishra AK
    Biotechnol Prog; 2000; 16(3):402-7. PubMed ID: 10835242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution.
    Young TJ; Johnson KP; Pace GW; Mishra AK
    AAPS PharmSciTech; 2004 Feb; 5(1):E11. PubMed ID: 15198532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution.
    Türk M; Lietzow R
    AAPS PharmSciTech; 2004 Sep; 5(4):e56. PubMed ID: 15760053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosizing drug particles in supercritical fluid processing.
    Pathak P; Meziani MJ; Desai T; Sun YP
    J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of fluorinated tetraphenylporphyrin nanoparticles via rapid expansion processes: RESS vs RESOLV.
    Sane A; Thies MC
    J Phys Chem B; 2005 Oct; 109(42):19688-95. PubMed ID: 16853546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
    Tozuka Y; Miyazaki Y; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):243-8. PubMed ID: 19895877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of supercritical solution rapid expansion technology in preparation of fine pharmacal particles].
    Zhang ZY; Li HL; Lei ZJ
    Zhongguo Zhong Yao Za Zhi; 2006 Dec; 31(23):1933-6. PubMed ID: 17348181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric nanoparticles from rapid expansion of supercritical fluid solution.
    Sun YP; Meziani MJ; Pathak P; Qu L
    Chemistry; 2005 Feb; 11(5):1366-73. PubMed ID: 15390139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system.
    Chattopadhyay P; Shekunov BY; Yim D; Cipolla D; Boyd B; Farr S
    Adv Drug Deliv Rev; 2007 Jul; 59(6):444-53. PubMed ID: 17582648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution.
    Sinswat P; Gao X; Yacaman MJ; Williams RO; Johnston KP
    Int J Pharm; 2005 Sep; 302(1-2):113-24. PubMed ID: 16109466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anion effects on electrostatic charging of sterically stabilized, water insoluble drug particles.
    Owen H; Graham S; Werling JO; Carter PW
    Int J Pharm; 2009 Feb; 368(1-2):154-9. PubMed ID: 18996460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution.
    Meziani MJ; Sun YP
    J Am Chem Soc; 2003 Jul; 125(26):8015-8. PubMed ID: 12823024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of ultrafine deferasirox particles via rapid expansion of supercritical solution (RESS process) using Taguchi approach.
    Asghari I; Esmaeilzadeh F
    Int J Pharm; 2012 Aug; 433(1-2):149-56. PubMed ID: 22583849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug release and permeation studies of nanosuspensions based on solidified reverse micellar solutions (SRMS).
    Friedrich I; Reichl S; Müller-Goymann CC
    Int J Pharm; 2005 Nov; 305(1-2):167-75. PubMed ID: 16242276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast-dissolving microparticles fail to show improved oral bioavailability.
    Wong SM; Kellaway IW; Murdan S
    J Pharm Pharmacol; 2006 Oct; 58(10):1319-26. PubMed ID: 17034654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryogenic liquids, nanoparticles, and microencapsulation.
    Purvis T; Vaughn JM; Rogers TL; Chen X; Overhoff KA; Sinswat P; Hu J; McConville JT; Johnston KP; Williams RO
    Int J Pharm; 2006 Oct; 324(1):43-50. PubMed ID: 16814968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).
    Helgason T; Awad TS; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2009 Jun; 334(1):75-81. PubMed ID: 19380149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution.
    Chen X; Young TJ; Sarkari M; Williams RO; Johnston KP
    Int J Pharm; 2002 Aug; 242(1-2):3-14. PubMed ID: 12176220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.