These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10835284)

  • 1. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design.
    Voigt CA; Gordon DB; Mayo SL
    J Mol Biol; 2000 Jun; 299(3):789-803. PubMed ID: 10835284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design.
    Georgiev I; Lilien RH; Donald BR
    Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preprocessing of rotamers for protein design calculations.
    Shah PS; Hom GK; Mayo SL
    J Comput Chem; 2004 Nov; 25(14):1797-800. PubMed ID: 15362137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dead-end elimination with backbone flexibility.
    Georgiev I; Donald BR
    Bioinformatics; 2007 Jul; 23(13):i185-94. PubMed ID: 17646295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dead-end elimination for multistate protein design.
    Yanover C; Fromer M; Shifman JM
    J Comput Chem; 2007 Oct; 28(13):2122-9. PubMed ID: 17471460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dramatic performance enhancements for the FASTER optimization algorithm.
    Allen BD; Mayo SL
    J Comput Chem; 2006 Jul; 27(10):1071-5. PubMed ID: 16685715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted dead-end elimination: protein redesign with a bounded number of residue mutations.
    Safi M; Lilien RH
    J Comput Chem; 2010 Apr; 31(6):1207-15. PubMed ID: 19885869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization.
    Desmet J; Spriet J; Lasters I
    Proteins; 2002 Jul; 48(1):31-43. PubMed ID: 12012335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles.
    Georgiev I; Lilien RH; Donald BR
    J Comput Chem; 2008 Jul; 29(10):1527-42. PubMed ID: 18293294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic Search Methods for Computational Protein Design.
    Traoré S; Allouche D; André I; Schiex T; Barbe S
    Methods Mol Biol; 2017; 1529():107-123. PubMed ID: 27914047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing three stochastic search algorithms for computational protein design: Monte Carlo, replica exchange Monte Carlo, and a multistart, steepest-descent heuristic.
    Mignon D; Simonson T
    J Comput Chem; 2016 Jul; 37(19):1781-93. PubMed ID: 27197555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and simple Monte Carlo algorithm for side chain optimization in proteins: application to model building by homology.
    Holm L; Sander C
    Proteins; 1992 Oct; 14(2):213-23. PubMed ID: 1409569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branch-and-terminate: a combinatorial optimization algorithm for protein design.
    Gordon DB; Mayo SL
    Structure; 1999 Sep; 7(9):1089-98. PubMed ID: 10508778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphin.
    Ozkan SB; Meirovitch H
    J Comput Chem; 2004 Mar; 25(4):565-72. PubMed ID: 14735574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MUMBO: a protein-design approach to crystallographic model building and refinement.
    Stiebritz MT; Muller YA
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):648-58. PubMed ID: 16699192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo protein design: towards fully automated sequence selection.
    Dahiyat BI; Sarisky CA; Mayo SL
    J Mol Biol; 1997 Nov; 273(4):789-96. PubMed ID: 9367772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring zipping and assembly as a protein folding principle.
    Voelz VA; Dill KA
    Proteins; 2007 Mar; 66(4):877-88. PubMed ID: 17154424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.