These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 10835486)
1. Evolutionary rate acceleration of cytochrome c oxidase subunit I in simian primates. Andrews TD; Easteal S J Mol Evol; 2000 Jun; 50(6):562-8. PubMed ID: 10835486 [TBL] [Abstract][Full Text] [Related]
2. Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins? Andrews TD; Jermiin LS; Easteal S J Mol Evol; 1998 Sep; 47(3):249-57. PubMed ID: 9732451 [TBL] [Abstract][Full Text] [Related]
3. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes? Wu W; Schmidt TR; Goodman M; Grossman LI Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942 [TBL] [Abstract][Full Text] [Related]
4. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates. Wu W; Goodman M; Lomax MI; Grossman LI J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172 [TBL] [Abstract][Full Text] [Related]
5. Evolution of eutherian cytochrome c oxidase subunit II: heterogeneous rates of protein evolution and altered interaction with cytochrome c. Adkins RM; Honeycutt RL; Disotell TR Mol Biol Evol; 1996 Dec; 13(10):1393-404. PubMed ID: 8952084 [TBL] [Abstract][Full Text] [Related]
6. Evolution of the primate cytochrome c oxidase subunit II gene. Adkins RM; Honeycutt RL J Mol Evol; 1994 Mar; 38(3):215-31. PubMed ID: 8006990 [TBL] [Abstract][Full Text] [Related]
7. Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences. Seo TK; Kishino H; Thorne JL Mol Biol Evol; 2004 Jul; 21(7):1201-13. PubMed ID: 15014159 [TBL] [Abstract][Full Text] [Related]
8. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates. Uddin M; Opazo JC; Wildman DE; Sherwood CC; Hof PR; Goodman M; Grossman LI BMC Evol Biol; 2008 Jan; 8():8. PubMed ID: 18197981 [TBL] [Abstract][Full Text] [Related]
9. Rapid nonsynonymous evolution of the iron-sulfur protein in anthropoid primates. Doan JW; Schmidt TR; Wildman DE; Goodman M; Weiss ML; Grossman LI J Bioenerg Biomembr; 2005 Feb; 37(1):35-41. PubMed ID: 15906147 [TBL] [Abstract][Full Text] [Related]
10. Ancient co-speciation of simian foamy viruses and primates. Switzer WM; Salemi M; Shanmugam V; Gao F; Cong ME; Kuiken C; Bhullar V; Beer BE; Vallet D; Gautier-Hion A; Tooze Z; Villinger F; Holmes EC; Heneine W Nature; 2005 Mar; 434(7031):376-80. PubMed ID: 15772660 [TBL] [Abstract][Full Text] [Related]
11. Coadaptive evolution in cytochrome c oxidase: 9 of 13 subunits show accelerated rates of nonsynonymous substitution in anthropoid primates. Doan JW; Schmidt TR; Wildman DE; Uddin M; Goldberg A; Hüttemann M; Goodman M; Weiss ML; Grossman LI Mol Phylogenet Evol; 2004 Dec; 33(3):944-50. PubMed ID: 15522815 [No Abstract] [Full Text] [Related]
12. Molecular evolution of aerobic energy metabolism in primates. Grossman LI; Schmidt TR; Wildman DE; Goodman M Mol Phylogenet Evol; 2001 Jan; 18(1):26-36. PubMed ID: 11161739 [TBL] [Abstract][Full Text] [Related]
13. Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates. Goldberg A; Wildman DE; Schmidt TR; Huttemann M; Goodman M; Weiss ML; Grossman LI Proc Natl Acad Sci U S A; 2003 May; 100(10):5873-8. PubMed ID: 12716970 [TBL] [Abstract][Full Text] [Related]
14. Amino acid replacement is rapid in primates for the mature polypeptides of COX subunits, but not for their targeting presequences. Schmidt TR; Goodman M; Grossman LI Gene; 2002 Mar; 286(1):13-9. PubMed ID: 11943455 [TBL] [Abstract][Full Text] [Related]
15. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671 [TBL] [Abstract][Full Text] [Related]
16. Gene trees and hominoid phylogeny. Ruvolo M; Pan D; Zehr S; Goldberg T; Disotell TR; von Dornum M Proc Natl Acad Sci U S A; 1994 Sep; 91(19):8900-4. PubMed ID: 8090741 [TBL] [Abstract][Full Text] [Related]
17. Search for genes positively selected during primate evolution by 5'-end-sequence screening of cynomolgus monkey cDNAs. Osada N; Kusuda J; Hirata M; Tanuma R; Hida M; Sugano S; Hirai M; Hashimoto K Genomics; 2002 May; 79(5):657-62. PubMed ID: 11991714 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex. Osada N; Akashi H Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic relationships among megabats, microbats, and primates. Mindell DP; Dick CW; Baker RJ Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10322-6. PubMed ID: 1658803 [TBL] [Abstract][Full Text] [Related]
20. Structure and evolution of primate cytochrome c oxidase subunit II gene. Ramharack R; Deeley RG J Biol Chem; 1987 Oct; 262(29):14014-21. PubMed ID: 2820991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]