These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 10835884)
1. [In vitro evaluation of pressure fluctuations with differing height of the infusion bottle in phacoemulsification]. Kageyama T; Yaguchi S Nippon Ganka Gakkai Zasshi; 2000 May; 104(5):312-6. PubMed ID: 10835884 [TBL] [Abstract][Full Text] [Related]
2. In Vitro Evaluation of Pressure Fluctuations with Differing Height of the Infusion Bottle in Phacoemulsification. Kageyama T; Yaguchi S Jpn J Ophthalmol; 2000 Nov; 44(6):690-691. PubMed ID: 11094193 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of Cruise Control in controlling postocclusion surge with Legacy and Millennium venturi phacoemulsification machines. Wade M; Isom R; Georgescu D; Olson RJ J Cataract Refract Surg; 2007 Jun; 33(6):1071-5. PubMed ID: 17531704 [TBL] [Abstract][Full Text] [Related]
4. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines. Ward MS; Georgescu D; Olson RJ J Cataract Refract Surg; 2008 Aug; 34(8):1400-2. PubMed ID: 18655995 [TBL] [Abstract][Full Text] [Related]
5. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems. Sharif-Kashani P; Fanney D; Injev V BMC Ophthalmol; 2014 Jul; 14():96. PubMed ID: 25074069 [TBL] [Abstract][Full Text] [Related]
7. Fluid dynamics and intraocular pressure using venturi phacoemulsification machine in dogs ex vivo. Kang S; Park S; Noh H; Seo K Vet Ophthalmol; 2015 Jul; 18(4):309-16. PubMed ID: 25348150 [TBL] [Abstract][Full Text] [Related]
8. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes. Georgescu D; Payne M; Olson RJ Am J Ophthalmol; 2007 Mar; 143(3):437-40. PubMed ID: 17222793 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of the fluidics of the AMO Prestige, Alcon Legacy, and Storz Premiere phacoemulsification systems. Wilbrandt HR J Cataract Refract Surg; 1997 Jun; 23(5):766-80. PubMed ID: 9278801 [TBL] [Abstract][Full Text] [Related]
11. Aqueous volume loss associated with occlusion break surge in phacoemulsifiers from 4 different manufacturers. Aravena C; Dyk DW; Thorne A; Fanney D; Miller KM J Cataract Refract Surg; 2018 Jul; 44(7):884-888. PubMed ID: 29937366 [TBL] [Abstract][Full Text] [Related]
12. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems. Han YK; Miller KM J Cataract Refract Surg; 2009 Aug; 35(8):1424-9. PubMed ID: 19631131 [TBL] [Abstract][Full Text] [Related]
13. Experimental study comparing 2 different phacoemulsification systems with intraocular pressure control during steady-state flow and occlusion break surge events. Fanney D; Layser GS; K AR; Kohlhammer S; Kübler C; Seibel BS J Cataract Refract Surg; 2023 Sep; 49(9):976-981. PubMed ID: 37343278 [TBL] [Abstract][Full Text] [Related]
14. Comparison of intraocular pressure profiles during cataract surgery by phacoemulsification and extracapsular cataract extraction. Grinbaum A; Blumenthal M; Assia E Ophthalmic Surg Lasers Imaging; 2003; 34(3):182-6. PubMed ID: 12757089 [TBL] [Abstract][Full Text] [Related]