These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10837)

  • 1. Oxidation of arsenite to arsenate by Alcaligenes faecalis.
    Philips SE; Taylor ML
    Appl Environ Microbiol; 1976 Sep; 32(3):392-9. PubMed ID: 10837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.
    Cavalca L; Corsini A; Bachate SP; Andreoni V
    World J Microbiol Biotechnol; 2013 Oct; 29(10):1931-40. PubMed ID: 23632906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of arsenite by a soil isolate of Alcaligenes.
    Osborne FH; Enrlich HL
    J Appl Bacteriol; 1976 Oct; 41(2):295-305. PubMed ID: 993144
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.
    Hatayama M; Sato T; Shinoda K; Inoue C
    J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7.
    Röger P; Erben A; Lingens F
    Biol Chem Hoppe Seyler; 1990 Jun; 371(6):511-3. PubMed ID: 2390217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus.
    Silver S; Budd K; Leahy KM; Shaw WV; Hammond D; Novick RP; Willsky GR; Malamy MH; Rosenberg H
    J Bacteriol; 1981 Jun; 146(3):983-96. PubMed ID: 7016838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new role for sulfur in arsenic cycling.
    Fisher JC; Wallschläger D; Planer-Friedrich B; Hollibaugh JT
    Environ Sci Technol; 2008 Jan; 42(1):81-5. PubMed ID: 18350879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite.
    Rathinasabapathi B; Raman SB; Kertulis G; Ma L
    Can J Microbiol; 2006 Jul; 52(7):695-700. PubMed ID: 16917527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil.
    Bahar MM; Megharaj M; Naidu R
    Biodegradation; 2012 Nov; 23(6):803-12. PubMed ID: 22760225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258.
    Ji G; Silver S
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9474-8. PubMed ID: 1409657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of nitrate in Achromobacter fischeri.
    Prakash O; Sadana JC
    Can J Microbiol; 1973 Jan; 19(1):15-25. PubMed ID: 4405508
    [No Abstract]   [Full Text] [Related]  

  • 16. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Arsenic oxidation by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus].
    Abdrashitova SA; Mynbaeva BN; Ilialetdinov AN
    Mikrobiologiia; 1981; 50(1):41-5. PubMed ID: 7219219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenics as bioenergetic substrates.
    van Lis R; Nitschke W; Duval S; Schoepp-Cothenet B
    Biochim Biophys Acta; 2013 Feb; 1827(2):176-88. PubMed ID: 22982475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolism of arsenite and arsenate by the rat.
    Lerman S; Clarkson TW
    Fundam Appl Toxicol; 1983; 3(4):309-14. PubMed ID: 6628893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous culture of Rhodotorula rubra: kinetics of phosphate-arsenate uptake, inhibition, and phosphate-limited growth.
    Button DK; Dunker SS; Morse ML
    J Bacteriol; 1973 Feb; 113(2):599-611. PubMed ID: 4690960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.