BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10837346)

  • 1. Separate entry pathways for phosphate and oxalate in rat brain microsomes.
    Meng XJ; Timmer RT; Gunn RB; Abercrombie RF
    Am J Physiol Cell Physiol; 2000 Jun; 278(6):C1183-90. PubMed ID: 10837346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate.
    Trotta EE; de Meis L
    Biochim Biophys Acta; 1975 Jun; 394(2):239-47. PubMed ID: 124599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stilbene disulfonates block ATP-sensitive K+ channels in guinea pig ventricular myocytes.
    Furukawa T; Virág L; Sawanobori T; Hiraoka M
    J Membr Biol; 1993 Dec; 136(3):289-302. PubMed ID: 8114079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of calcium uptake by liver microsomes: effect of anions and ionophores.
    Chan KM; Koepnick SL
    Biochim Biophys Acta; 1985 Sep; 818(3):291-8. PubMed ID: 2994726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-dependent Ca-uptake by rat vas deferens smooth muscle microsomes: properties of oxalate stimulated and oxalate-independent Ca-uptake.
    Grover AK; Kwan CY
    Arch Int Pharmacodyn Ther; 1984 Jan; 267(1):4-12. PubMed ID: 6721623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of 4,4'-diisothyocyanatostilbene-2,2'-disulfonic acid on Trypanosoma cruzi proliferation and Ca(2+) homeostasis.
    Bernardes CF; Meyer-Fernandes JR; Saad-Nehme J; Vannier-Santos MA; Peres-Sampaio CE; Vercesi AE
    Int J Biochem Cell Biol; 2000 May; 32(5):519-27. PubMed ID: 10736567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substitution of phosphate for oxalate in the study of calcium accumulation and release by cardiac microsomal fractions.
    Dunnett J; Nayler WG
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():213-8. PubMed ID: 801572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular origin of the oxalate- or inorganic phosphate-stimulated Ca2+ transport by smooth muscle microsomes: revisitation of the old problem by a new approach using saponin.
    Kwan CY
    Biochim Biophys Acta; 1985 Sep; 819(1):148-52. PubMed ID: 2931116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mg2+,ATP-dependent transport of Ca2+ in the endoplasmic reticulum of myometrial cells].
    Kosterin SA; Babich LG; Shlykov SG; Rovenets NA
    Biokhimiia; 1996 Jan; 61(1):73-81. PubMed ID: 8679780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on calcium uptake by myometrial microsomes with particular reference to the dependence on inorganic phosphate and oxalate.
    Batra S
    Acta Physiol Scand; 1978 Sep; 104(1):68-73. PubMed ID: 29440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the intraluminal Ca load on the kinetics of 45Ca uptake and efflux in brain microsomes.
    Wells KM; Abercrombie RF
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1472-9. PubMed ID: 8944629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of frog skeletal muscle Ca2+ release channel gating by anion channel blockers.
    Oba T; Koshita M; Van Helden DF
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C819-24. PubMed ID: 8843711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the Na/bicarbonate cotransporter NBCe1-A by diBAC oxonol dyes relative to niflumic acid and a stilbene.
    Liu X; Williams JB; Sumpter BR; Bevensee MO
    J Membr Biol; 2007 Feb; 215(2-3):195-204. PubMed ID: 17578633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ATP-driven calcium uptake in renal basal-lateral and renal endoplasmic reticulum membrane vesicles.
    Parys JB; De Smedt H; Vandenberghe P; Borghgraef R
    Cell Calcium; 1985 Oct; 6(5):413-29. PubMed ID: 2416455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine triphosphate--dependent calcium uptake by rat submaxillary gland microsomes.
    Alonso GL; Bazerque PM; Arrigó DM; Tumilasci OR
    J Gen Physiol; 1971 Sep; 58(3):340-50. PubMed ID: 4255373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of adenosine triphosphate into endoplasmic reticulum proteoliposomes.
    Guillén E; Hirschberg CB
    Biochemistry; 1995 Apr; 34(16):5472-6. PubMed ID: 7727405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Several phosphate transport processes are present in vascular smooth muscle cells.
    Hortells L; Guillén N; Sosa C; Sorribas V
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H448-H460. PubMed ID: 31886722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion exchanger AE1 as a candidate pathway for taurine transport in rat erythrocytes.
    Conejero C
    Am J Physiol; 1997 May; 272(5 Pt 1):C1457-64. PubMed ID: 9176135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between oxalate and phosphate during active calcium accumulation by sarcoplasmic vesicles.
    Beil FU; von Chak D; Hasselbach W; Weber HH
    Z Naturforsch C Biosci; 1977; 32(3-4):281-7. PubMed ID: 141806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.