These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 10837496)
1. Identification of an Fe protein residue (Glu146) of Azotobacter vinelandii nitrogenase that is specifically involved in FeMo cofactor insertion. Ribbe MW; Bursey EH; Burgess BK J Biol Chem; 2000 Jun; 275(23):17631-8. PubMed ID: 10837496 [TBL] [Abstract][Full Text] [Related]
2. Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis. Kim CH; Newton WE; Dean DR Biochemistry; 1995 Mar; 34(9):2798-808. PubMed ID: 7893691 [TBL] [Abstract][Full Text] [Related]
3. Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins. Benton PM; Mayer SM; Shao J; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2001 Nov; 40(46):13816-25. PubMed ID: 11705370 [TBL] [Abstract][Full Text] [Related]
4. 14N electron spin-echo envelope modulation of the S = 3/2 spin system of the Azotobacter vinelandii nitrogenase iron-molybdenum cofactor. Lee HI; Thrasher KS; Dean DR; Newton WE; Hoffman BM Biochemistry; 1998 Sep; 37(38):13370-8. PubMed ID: 9748344 [TBL] [Abstract][Full Text] [Related]
5. Iron-molybdenum cofactor insertion into the Apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex. Robinson AC; Chun TW; Li JG; Burgess BK J Biol Chem; 1989 Jun; 264(17):10088-95. PubMed ID: 2785995 [TBL] [Abstract][Full Text] [Related]
6. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene. Fisher K; Dilworth MJ; Kim CH; Newton WE Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of a FeMo cofactor-deficient MoFe protein. Gavini N; Ma L; Watt G; Burgess BK Biochemistry; 1994 Oct; 33(39):11842-9. PubMed ID: 7918402 [TBL] [Abstract][Full Text] [Related]
8. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein. Benton PM; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2003 Aug; 42(30):9102-9. PubMed ID: 12885243 [TBL] [Abstract][Full Text] [Related]
9. Involvement of the P cluster in intramolecular electron transfer within the nitrogenase MoFe protein. Peters JW; Fisher K; Newton WE; Dean DR J Biol Chem; 1995 Nov; 270(45):27007-13. PubMed ID: 7592949 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Chan JM; Christiansen J; Dean DR; Seefeldt LC Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529 [TBL] [Abstract][Full Text] [Related]
11. The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters. Jimenez-Vicente E; Yang ZY; Martin Del Campo JS; Cash VL; Seefeldt LC; Dean DR J Biol Chem; 2019 Apr; 294(16):6204-6213. PubMed ID: 30846561 [TBL] [Abstract][Full Text] [Related]
12. Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. Robinson AC; Dean DR; Burgess BK J Biol Chem; 1987 Oct; 262(29):14327-32. PubMed ID: 3477546 [TBL] [Abstract][Full Text] [Related]
13. Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. Igarashi RY; Dos Santos PC; Niehaus WG; Dance IG; Dean DR; Seefeldt LC J Biol Chem; 2004 Aug; 279(33):34770-5. PubMed ID: 15181010 [TBL] [Abstract][Full Text] [Related]
14. 57Fe ENDOR spectroscopy and 'electron inventory' analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple. Doan PE; Telser J; Barney BM; Igarashi RY; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2011 Nov; 133(43):17329-40. PubMed ID: 21980917 [TBL] [Abstract][Full Text] [Related]
15. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity. Gavini N; Burgess BK J Biol Chem; 1992 Oct; 267(29):21179-86. PubMed ID: 1400428 [TBL] [Abstract][Full Text] [Related]
16. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein. Shen J; Dean DR; Newton WE Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509 [TBL] [Abstract][Full Text] [Related]
17. Molecular insights into nitrogenase FeMo cofactor insertion: the role of His 362 of the MoFe protein alpha subunit in FeMo cofactor incorporation. Hu Y; Fay AW; Ribbe MW J Biol Inorg Chem; 2007 May; 12(4):449-60. PubMed ID: 17203313 [TBL] [Abstract][Full Text] [Related]
18. The chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase. Ribbe MW; Burgess BK Proc Natl Acad Sci U S A; 2001 May; 98(10):5521-5. PubMed ID: 11331775 [TBL] [Abstract][Full Text] [Related]
19. Electron spin echo envelope modulation spectroscopic analysis of altered nitrogenase MoFe proteins from Azotobacter vinelandii. DeRose VJ; Kim CH; Newton WE; Dean DR; Hoffman BM Biochemistry; 1995 Mar; 34(9):2809-14. PubMed ID: 7893692 [TBL] [Abstract][Full Text] [Related]
20. Electron paramagnetic resonance analysis of different Azotobacter vinelandii nitrogenase MoFe-protein conformations generated during enzyme turnover: evidence for S = 3/2 spin states from reduced MoFe-protein intermediates. Fisher K; Newton WE; Lowe DJ Biochemistry; 2001 Mar; 40(11):3333-9. PubMed ID: 11258953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]