BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10837787)

  • 21. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemoglobin-based oxygen carriers.
    Stowell CP
    Curr Opin Hematol; 2002 Nov; 9(6):537-43. PubMed ID: 12394179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the polymerization step alone on oxygen affinity and cooperativity during production of hyperpolymers from native hemoglobins with crosslinkers.
    Barnikol WK
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):725-31. PubMed ID: 7994394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemoglobin-albumin cross-linking with disuccinimidyl suberate (DSS) and/or glutaraldehyde for blood substitutes.
    Scurtu F; Zolog O; Iacob B; Silaghi-Dumitrescu R
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):13-7. PubMed ID: 23342991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modern cross-linking strategies for synthesizing acellular hemoglobin-based oxygen carriers.
    Harris DR; Palmer AF
    Biotechnol Prog; 2008; 24(6):1215-25. PubMed ID: 19194934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of recombinant hemoglobin-based oxygen carriers.
    Varnado CL; Mollan TL; Birukou I; Smith BJ; Henderson DP; Olson JS
    Antioxid Redox Signal; 2013 Jun; 18(17):2314-28. PubMed ID: 23025383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of cationic starch on hemoglobin, and the primary attempt to encapsulate hemoglobin.
    Gao W; Sha B; Liu Y; Wu D; Shen X; Jing G
    Artif Cells Nanomed Biotechnol; 2015 Jun; 43(3):196-202. PubMed ID: 25749279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low affinity PEGylated hemoglobin from Trematomus bernacchii, a model for hemoglobin-based blood substitutes.
    Coppola D; Bruno S; Ronda L; Viappiani C; Abbruzzetti S; di Prisco G; Verde C; Mozzarelli A
    BMC Biochem; 2011 Dec; 12():66. PubMed ID: 22185675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of recombinant hemoglobins for use in transfusion fluids.
    Fronticelli C; Koehler RC
    Crit Care Clin; 2009 Apr; 25(2):357-71, Table of Contents. PubMed ID: 19341913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Convenient method to purify hemoglobin.
    Sakai H; Takeoka S; Nishide H; Tsuchida E
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):651-6. PubMed ID: 7994386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants?
    Alayash AI
    Nat Biotechnol; 1999 Jun; 17(6):545-9. PubMed ID: 10385317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemospan: design principles for a new class of oxygen therapeutic.
    Vandegriff KD; Winslow RM
    Artif Organs; 2009 Feb; 33(2):133-8. PubMed ID: 19178457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A natural compound (reuterin) produced by Lactobacillus reuteri for hemoglobin polymerization as a blood substitute.
    Chen YC; Chang WH; Chang Y; Huang CM; Sung HW
    Biotechnol Bioeng; 2004 Jul; 87(1):34-42. PubMed ID: 15211486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large scale preparation of functional human placental hemoglobin for use in blood substitutes.
    Fasan G; Vigneron C; Dellacherie E; Grandgeorge M
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):489-91. PubMed ID: 1391468
    [No Abstract]   [Full Text] [Related]  

  • 35. Quality control of hemoglobin-based blood substitutes.
    Hsia JC; Er SS
    Biomater Artif Cells Artif Organs; 1988; 16(1-3):105-11. PubMed ID: 3179461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen-transport and solution properties of polylipid/Hb vesicles (ARC).
    Takeoka S; Hasegawa E; Nishide H; Tsuchida E; Sekiguchi S
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):399-404. PubMed ID: 1391455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantitative framework for the design of acellular hemoglobins as blood substitutes: implications of dynamic flow conditions.
    Cole RH; Vandegriff KD; Szeri AJ; Savaş O; Baker DA; Winslow RM
    Biophys Chem; 2007 Jun; 128(1):63-74. PubMed ID: 17418478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Red cell substitutes from hemoglobin--do we start all over again?
    Kluger R
    Curr Opin Chem Biol; 2010 Aug; 14(4):538-43. PubMed ID: 20392662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymerization of human hemoglobin using the crosslinker 1,11-bis(maleimido)triethylene glycol for use as an oxygen carrier.
    Zhang N; Palmer AF
    Biotechnol Prog; 2010; 26(5):1481-5. PubMed ID: 20564360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new polyethyleneglycol-derivatized hemoglobin derivative with decreased oxygen affinity and limited toxicity.
    Zolog O; Mot A; Deac F; Roman A; Fischer-Fodor E; Silaghi-Dumitrescu R
    Protein J; 2011 Jan; 30(1):27-31. PubMed ID: 21161348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.