These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10838019)

  • 1. Theoretical calculation and prediction of P-glycoprotein-interacting drugs using MolSurf parametrization and PLS statistics.
    Osterberg T; Norinder U
    Eur J Pharm Sci; 2000; 10(4):295-303. PubMed ID: 10838019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical calculation and prediction of intestinal absorption of drugs in humans using MolSurf parametrization and PLS statistics.
    Norinder U; Osterberg T; Artursson P
    Eur J Pharm Sci; 1999 Apr; 8(1):49-56. PubMed ID: 10072478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical calculation and prediction of Caco-2 cell permeability using MolSurf parametrization and PLS statistics.
    Norinder U; Osterberg T; Artursson P
    Pharm Res; 1997 Dec; 14(12):1786-91. PubMed ID: 9453069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simplified model to predict P-glycoprotein interacting drugs from 3D molecular interaction field.
    Zhuang XM; Xiao JH; Li JT; Zhang ZQ; Ruan JX
    Int J Pharm; 2006 Feb; 309(1-2):109-14. PubMed ID: 16376035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics.
    Norinder U; Sjöberg P; Osterberg T
    J Pharm Sci; 1998 Aug; 87(8):952-9. PubMed ID: 9687339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of solubility parameters using partial least square regression.
    Tantishaiyakul V; Worakul N; Wongpoowarak W
    Int J Pharm; 2006 Nov; 325(1-2):8-14. PubMed ID: 16839717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationships of P-glycoprotein interacting drugs: kinetic characterization of their effects on ATPase activity.
    Litman T; Zeuthen T; Skovsgaard T; Stein WD
    Biochim Biophys Acta; 1997 Aug; 1361(2):159-68. PubMed ID: 9300797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling.
    Luco JM
    J Chem Inf Comput Sci; 1999; 39(2):396-404. PubMed ID: 10192950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and functional reconstitution of the multidrug transporter.
    Sharom FJ
    J Bioenerg Biomembr; 1995 Feb; 27(1):15-22. PubMed ID: 7629046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of drug transport processes using simple parameters and PLS statistics. The use of ACD/logP and ACD/ChemSketch descriptors.
    Osterberg T; Norinder U
    Eur J Pharm Sci; 2001 Jan; 12(3):327-37. PubMed ID: 11113652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate statistics of disposition pharmacokinetic parameters for structurally unrelated drugs used in therapeutics.
    Karalis V; Tsantili-Kakoulidou A; Macheras P
    Pharm Res; 2002 Dec; 19(12):1827-34. PubMed ID: 12523661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive and non-competitive inhibition of the multidrug-resistance-associated P-glycoprotein ATPase--further experimental evidence for a multisite model.
    Garrigos M; Mir LM; Orlowski S
    Eur J Biochem; 1997 Mar; 244(2):664-73. PubMed ID: 9119038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical calculation and prediction of drug transport processes using simple parameters and partial least squares projections to latent structures (PLS) statistics. The use of electrotopological state indices.
    Norinder U; Osterberg T
    J Pharm Sci; 2001 Aug; 90(8):1076-85. PubMed ID: 11536212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximity of bound Hoechst 33342 to the ATPase catalytic sites places the drug binding site of P-glycoprotein within the cytoplasmic membrane leaflet.
    Qu Q; Sharom FJ
    Biochemistry; 2002 Apr; 41(14):4744-52. PubMed ID: 11926837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of contact angle for pharmaceutical solids from their molecular structure.
    Suihko E; Forbes RT; Korhonen O; Ketolainen J; Paronen P; Gynther J; Poso A
    J Pharm Sci; 2005 Apr; 94(4):745-58. PubMed ID: 15682381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational aqueous solubility prediction for drug-like compounds in congeneric series.
    Du-Cuny L; Huwyler J; Wiese M; Kansy M
    Eur J Med Chem; 2008 Mar; 43(3):501-12. PubMed ID: 17574307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidrug resistance--a fascinating, clinically relevant problem in bioenergetics.
    Pedersen PL
    J Bioenerg Biomembr; 1995 Feb; 27(1):3-5. PubMed ID: 7629048
    [No Abstract]   [Full Text] [Related]  

  • 18. Modelling of human acute toxicity from physicochemical properties and non-vertebrate acute toxicity of the 38 organic chemicals of the MEIC priority list by PLS regression and neural network.
    Calleja MC; Geladi P; Persoone G
    Food Chem Toxicol; 1994 Oct; 32(10):923-41. PubMed ID: 7959448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-glycoprotein-mediated multidrug resistance in tumor cells: biochemistry, clinical relevance and modulation.
    Shustik C; Dalton W; Gros P
    Mol Aspects Med; 1995; 16(1):1-78. PubMed ID: 7783568
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular descriptors influencing melting point and their role in classification of solid drugs.
    Bergström CA; Norinder U; Luthman K; Artursson P
    J Chem Inf Comput Sci; 2003; 43(4):1177-85. PubMed ID: 12870909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.