These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 10838041)
1. Catalytic site forms and controls in ATP synthase catalysis. Boyer PD Biochim Biophys Acta; 2000 May; 1458(2-3):252-62. PubMed ID: 10838041 [TBL] [Abstract][Full Text] [Related]
2. The rotary binding change mechanism of ATP synthases. Cross RL Biochim Biophys Acta; 2000 May; 1458(2-3):270-5. PubMed ID: 10838043 [TBL] [Abstract][Full Text] [Related]
3. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297 [TBL] [Abstract][Full Text] [Related]
4. Determination of the partial reactions of rotational catalysis in F1-ATPase. Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014 [TBL] [Abstract][Full Text] [Related]
5. [Catalytic properties of mitochondrial ATP-synthetase]. Vinogradov AD Biokhimiia; 1984 Aug; 49(8):1220-38. PubMed ID: 6093895 [No Abstract] [Full Text] [Related]
6. Toward an adequate scheme for the ATP synthase catalysis. Boyer PD Biochemistry (Mosc); 2001 Oct; 66(10):1058-66. PubMed ID: 11736627 [TBL] [Abstract][Full Text] [Related]
7. Important subunit interactions in the chloroplast ATP synthase. Richter ML; Hein R; Huchzermeyer B Biochim Biophys Acta; 2000 May; 1458(2-3):326-42. PubMed ID: 10838048 [TBL] [Abstract][Full Text] [Related]
8. ATP hydrolysis in ATP synthases can be differently coupled to proton transport and modulated by ADP and phosphate: a structure based model of the mechanism. D'Alessandro M; Melandri BA Biochim Biophys Acta; 2010; 1797(6-7):755-62. PubMed ID: 20230778 [TBL] [Abstract][Full Text] [Related]
9. Evidence that energization of the chloroplast ATP synthase favors ATP formation at the tight binding catalytic site and increases the affinity for ADP at another catalytic site. Zhou JM; Boyer PD J Biol Chem; 1993 Jan; 268(3):1531-8. PubMed ID: 8420929 [TBL] [Abstract][Full Text] [Related]
10. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. Ko YH; Hong S; Pedersen PL J Biol Chem; 1999 Oct; 274(41):28853-6. PubMed ID: 10506126 [TBL] [Abstract][Full Text] [Related]
11. Covalent modification of the non-catalytic sites of the H(+)-ATPase from chloroplasts with 2-azido-[alpha-(32)P]ATP and its effect on ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2001 Feb; 1510(1-2):378-400. PubMed ID: 11342174 [TBL] [Abstract][Full Text] [Related]
12. Covalent modification of the catalytic sites of the H+-ATPase from chloroplasts and 2-nitreno-ADP. Modification of the catalytic site 1 (tight) and catalytic sites 1 and 2 together impairs both uni-site and multi-site catalysis of ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jul; 1459(1):202-17. PubMed ID: 10924912 [TBL] [Abstract][Full Text] [Related]
13. Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. Adachi K; Oiwa K; Nishizaka T; Furuike S; Noji H; Itoh H; Yoshida M; Kinosita K Cell; 2007 Jul; 130(2):309-21. PubMed ID: 17662945 [TBL] [Abstract][Full Text] [Related]
14. Catalytic site occupancy during ATP synthase catalysis. Boyer PD FEBS Lett; 2002 Feb; 512(1-3):29-32. PubMed ID: 11852046 [TBL] [Abstract][Full Text] [Related]
15. Does the gamma subunit move to an abortive position of ATP hydrolysis when the F1.ADP.Mg complex isomerizes to the inactive F1*.ADP.Mg complex? Allison WS; Jault JM; Dou C; Grodsky NB J Bioenerg Biomembr; 1996 Oct; 28(5):433-8. PubMed ID: 8951090 [TBL] [Abstract][Full Text] [Related]
16. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway. Al-Shawi MK; Ketchum CJ; Nakamoto RK Biochemistry; 1997 Oct; 36(42):12961-9. PubMed ID: 9335556 [TBL] [Abstract][Full Text] [Related]
17. Catalytic site nucleotide binding and hydrolysis in F1F0-ATP synthase. Löbau S; Weber J; Senior AE Biochemistry; 1998 Jul; 37(30):10846-53. PubMed ID: 9692975 [TBL] [Abstract][Full Text] [Related]
18. Properties of ATP tightly bound to catalytic sites of chloroplast ATP synthase. Smith LT; Rosen G; Boyer PD J Biol Chem; 1983 Sep; 258(18):10887-94. PubMed ID: 6309820 [TBL] [Abstract][Full Text] [Related]
19. ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. Weber J; Senior AE Biochim Biophys Acta; 2000 May; 1458(2-3):300-9. PubMed ID: 10838046 [TBL] [Abstract][Full Text] [Related]
20. ATP synthase: a tentative structural model. Engelbrecht S; Junge W FEBS Lett; 1997 Sep; 414(3):485-91. PubMed ID: 9323021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]