BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 10838045)

  • 1. Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase.
    Nakamoto RK; Ketchum CJ; Kuo PH; Peskova YB; Al-Shawi MK
    Biochim Biophys Acta; 2000 May; 1458(2-3):289-99. PubMed ID: 10838045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic control and coupling efficiency of the Escherichia coli FoF1 ATP synthase: influence of the Fo sector and epsilon subunit on the catalytic transition state.
    Peskova YB; Nakamoto RK
    Biochemistry; 2000 Sep; 39(38):11830-6. PubMed ID: 10995251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ.
    Fillingame RH; Dmitriev OY
    Biochim Biophys Acta; 2002 Oct; 1565(2):232-45. PubMed ID: 12409198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational coupling in the F0F1 ATP synthase.
    Nakamoto RK; Ketchum CJ; al-Shawi MK
    Annu Rev Biophys Biomol Struct; 1999; 28():205-34. PubMed ID: 10410801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.
    Nakanishi-Matsui M; Sekiya M; Futai M
    IUBMB Life; 2013 Mar; 65(3):247-54. PubMed ID: 23441040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site.
    Kuo PH; Nakamoto RK
    Biochem J; 2000 May; 347 Pt 3(Pt 3):797-805. PubMed ID: 10769185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of phytopolyphenol piceatannol disrupts β/γ subunit interactions and rate-limiting step of steady-state rotational catalysis in Escherichia coli F1-ATPase.
    Sekiya M; Nakamoto RK; Nakanishi-Matsui M; Futai M
    J Biol Chem; 2012 Jun; 287(27):22771-80. PubMed ID: 22582396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation.
    Sambongi Y; Iko Y; Tanabe M; Omote H; Iwamoto-Kihara A; Ueda I; Yanagida T; Wada Y; Futai M
    Science; 1999 Nov; 286(5445):1722-4. PubMed ID: 10576736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural interpretations of F(0) rotary function in the Escherichia coli F(1)F(0) ATP synthase.
    Fillingame RH; Jiang W; Dmitriev OY; Jones PC
    Biochim Biophys Acta; 2000 May; 1458(2-3):387-403. PubMed ID: 10838053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine.
    Fillingame RH
    J Exp Biol; 1997 Jan; 200(Pt 2):217-24. PubMed ID: 9050229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.
    Bulygin VV; Duncan TM; Cross RL
    J Biol Chem; 2004 Aug; 279(34):35616-21. PubMed ID: 15199054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes in the gamma and epsilon subunits are integral to the functioning of the Escherichia coli H(+)-pumping ATPase (ECF1F0).
    Capaldi RA; Aggeler R; Wilkens S
    Biochem Soc Trans; 1995 Nov; 23(4):767-70. PubMed ID: 8654834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rotor-stator cross-link in the F1-ATPase blocks the rate-limiting step of rotational catalysis.
    Scanlon JA; Al-Shawi MK; Nakamoto RK
    J Biol Chem; 2008 Sep; 283(38):26228-40. PubMed ID: 18628203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. F(1)-ATPase: a prototypical rotary molecular motor.
    Kinosita K
    Adv Exp Med Biol; 2012; 726():5-16. PubMed ID: 22297508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.
    Iino R; Noji H
    IUBMB Life; 2013 Mar; 65(3):238-46. PubMed ID: 23341301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Important subunit interactions in the chloroplast ATP synthase.
    Richter ML; Hein R; Huchzermeyer B
    Biochim Biophys Acta; 2000 May; 1458(2-3):326-42. PubMed ID: 10838048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The unbinding of ATP from F1-ATPase.
    Antes I; Chandler D; Wang H; Oster G
    Biophys J; 2003 Aug; 85(2):695-706. PubMed ID: 12885621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.
    Nakanishi-Matsui M; Sekiya M; Futai M
    Biochim Biophys Acta; 2016 Feb; 1857(2):129-140. PubMed ID: 26589785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na
    Bogdanović N; Trifunović D; Sielaff H; Westphal L; Bhushan S; Müller V; Grüber G
    FEBS J; 2019 May; 286(10):1894-1907. PubMed ID: 30791207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.