BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 10838927)

  • 1. Population dynamics and net primary production of the aquatic macrophyte Nymphaea rudgeana C. F. Mey in a lotic environment of the Itanhaém River basin (SP, Brazil).
    Camargo AF; Florentino ER
    Rev Bras Biol; 2000 Feb; 60(1):83-92. PubMed ID: 10838927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The water level influence on biomass of Echinochloa polystachya (Poaceae) in the Jurumirim Reservoir (São Paulo, Brazil).
    Pompêo ML; Henry R; Moschini-Carlos V
    Braz J Biol; 2001 Feb; 61(1):19-26. PubMed ID: 11340458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in biomass, chemical composition and nutritive value of Spartina alterniflora due to organic pollution in the Itanhaém River Basin (SP, Brazil).
    Biudes JF; Camargo AF
    Braz J Biol; 2006 Aug; 66(3):781-9. PubMed ID: 17119825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil.
    Molisani MM; Rocha R; Machado W; Barreto RC; Lacerda LD
    Braz J Biol; 2006 Feb; 66(1A):101-7. PubMed ID: 16680311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrologic cycle and dynamics of aquatic macrophytes in two intermittent rivers of the semi-arid region of Brazil.
    Pedro F; Maltchik L; Bianchini I
    Braz J Biol; 2006 May; 66(2B):575-85. PubMed ID: 16906290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.
    Guimarães JR; Meili M; Hylander LD; de Castro e Silva E; Roulet M; Mauro JB; de Lemos R
    Sci Total Environ; 2000 Oct; 261(1-3):99-107. PubMed ID: 11036981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Aquatic macrophytes from a marginal lake of the Embu-mirim river, São Paulo, Brazil].
    Beyruth Z
    Rev Saude Publica; 1992 Aug; 26(4):272-82. PubMed ID: 1342512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Mansonia spp. Infestation on Aquatic Plants in Lentic and Lotic Environments of the Madeira River Basin in Porto Velho, Rondônia, Brazil.
    Soares Gil LH; Mello CF; Silva JDS; Oliveira JDS; Freitas Silva SO; Rodríguez-Planes L; Da Costa FM; Alencar J
    J Am Mosq Control Assoc; 2021 Sep; 37(3):143-151. PubMed ID: 34407173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain.
    Silva TS; Melack JM; Novo EM
    Glob Chang Biol; 2013 Nov; 19(11):3379-89. PubMed ID: 23818397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass decaying and elemental release of aquatic macrophyte detritus in waterways of the Indian River Lagoon basin, South Florida, USA.
    Zhou X; He Z; Ding F; Li L; Stoffella PJ
    Sci Total Environ; 2018 Sep; 635():878-891. PubMed ID: 29710610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil).
    Bianchini I; Cunha-Santino MB; Panhota RS
    Braz J Biol; 2011 Feb; 71(1):27-35. PubMed ID: 21437396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invertebrate herbivory on floating-leaf macrophytes at the northeast of Argentina: should the damage be taken into account in estimations of plant biomass?
    Martínez FS; Franceschini C
    An Acad Bras Cienc; 2018; 90(1):155-167. PubMed ID: 29641757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs.
    Moura Júnior EG; Pott A; Severi W; Zickel CS
    Braz J Biol; 2019; 79(1):120-126. PubMed ID: 29538484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolution of copper and iron from automotive brake pad wear debris enhances growth and accumulation by the invasive macrophyte Salvinia molesta Mitchell.
    Shupert LA; Ebbs SD; Lawrence J; Gibson DJ; Filip P
    Chemosphere; 2013 Jun; 92(1):45-51. PubMed ID: 23582708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the residue from an iron mining dam in the growth of two macrophyte species.
    Bottino F; Milan JAM; Cunha-Santino MB; Bianchini I
    Chemosphere; 2017 Nov; 186():488-494. PubMed ID: 28806677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic spraying of imazamox to control the floating aquatic plant
    Garlich N; Garcia GL; de Oliveira AC; Dos Santos KP; Pitelli RA; Ferreira MDC; da Cruz C
    J Environ Sci Health B; 2021; 56(3):251-258. PubMed ID: 33370160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of the aquatic macrophyte cover in Cachoeira Dourada Reservoir (GO-MG).
    Bini LM; Oliveira LG; Souza DC; Carvalho P; Pinto MP
    Braz J Biol; 2005 Feb; 65(1):19-24. PubMed ID: 16025899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Seasonal succession of lotic epiphyton: effects of macrophyte cover and grazing by chironomid larvae].
    Rusanov AG; Khromov VM
    Zh Obshch Biol; 2005; 66(1):55-67. PubMed ID: 15810675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of periphytic diatoms to mechanical removal of Pistia stratiotes L. in a hypereutrophic subtropical reservoir: dynamics and tolerance.
    Matias de Faria D; Guimarães AT; Ludwig TA
    Braz J Biol; 2013 Nov; 73(4):681-9. PubMed ID: 24789382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant traits and environment: floating leaf blade production and turnover of waterlilies.
    Klok PF; van der Velde G
    PeerJ; 2017; 5():e3212. PubMed ID: 28462025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.