These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1083895)

  • 1. Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle.
    Jaimovich E; Venosa RA; Shrager P; Horowicz P
    J Gen Physiol; 1976 Apr; 67(4):399-416. PubMed ID: 1083895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrodotoxin binding to normal depolarized frog muscle and the conductance of a single sodium channel.
    Almers W; Levinson SR
    J Physiol; 1975 May; 247(2):483-509. PubMed ID: 1080198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The binding of tetrodotoxin and alpha-bungarotoxin to normal and denervated mammalian muscle.
    Colquhoun D; Rang HP; Ritchie JM
    J Physiol; 1974 Jul; 240(1):199-226. PubMed ID: 4854666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glycerol treatment on the calcium current of frog skeletal muscle.
    Siri LN; Sánchez JA; Stefani E
    J Physiol; 1980 Aug; 305():87-96. PubMed ID: 6969308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action. Voltage-clamp studies on frog myelinated nerve.
    Hahin R; Strichartz G
    J Gen Physiol; 1981 Aug; 78(2):113-39. PubMed ID: 6268735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres.
    Sheikh SM; Skepper JN; Chawla S; Vandenberg JI; Elneil S; Huang CL
    J Physiol; 2001 Sep; 535(Pt 2):579-90. PubMed ID: 11533146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers.
    Gage PW; Eisenberg RS
    J Gen Physiol; 1969 Mar; 53(3):265-78. PubMed ID: 5767332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional diversities among mu-conotoxins targeting TTX-resistant sodium channels.
    Zhang MM; Fiedler B; Green BR; Catlin P; Watkins M; Garrett JE; Smith BJ; Yoshikami D; Olivera BM; Bulaj G
    Biochemistry; 2006 Mar; 45(11):3723-32. PubMed ID: 16533055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibers.
    Huang CL; Peachey LD
    J Gen Physiol; 1989 Mar; 93(3):565-84. PubMed ID: 2784827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The binding of tetrodotoxin to nerve membranes.
    Keynes RD; Ritchie JM; Rojas E
    J Physiol; 1971 Feb; 213(1):235-54. PubMed ID: 5575342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the properties of Na+ channels in muscle surface and T-tubular membranes revealed by tetrodotoxin derivatives.
    Jaimovich E; Chicheportiche R; Lombet A; Lazdunski M; Ildefonse M; Rougier O
    Pflugers Arch; 1983 Apr; 397(1):1-5. PubMed ID: 6306551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detubulation effects on the action of zinc on frog skeletal muscle action potential.
    Sandow A; Pagala MK
    J Membr Biol; 1978 Jul; 41(4):309-21. PubMed ID: 308543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular pH regulation in detubulated frog skeletal muscle fibers.
    Putnam RW
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1358-66. PubMed ID: 8897843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrodotoxin blocks mechanical response in mammalian muscle in the presence of tetrodotoxin-resistant action potentials.
    Muchnik S; Kotsias BA
    Acta Physiol Lat Am; 1978; 28(2-3):115-20. PubMed ID: 555828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Batrachotoxin-modified sodium channels in planar lipid bilayers. Characterization of saxitoxin- and tetrodotoxin-induced channel closures.
    Green WN; Weiss LB; Andersen OS
    J Gen Physiol; 1987 Jun; 89(6):873-903. PubMed ID: 2440978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in electrical properties of muscle membrane systems during decoupling and recoupling induced by glycerol.
    Zacharová D; Poledna J; Zachar J
    Physiol Bohemoslov; 1978; 27(5):467-76. PubMed ID: 153540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation of voltage-dependent binding with activation.
    Catterall WA
    J Gen Physiol; 1979 Sep; 74(3):375-91. PubMed ID: 479827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium permeability of frog skeletal muscle in absence and presence of veratridine.
    McKinney LC; Ratzlaff RW
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C190-6. PubMed ID: 2435162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes.
    Brette F; Orchard CH
    Circ Res; 2006 Mar; 98(5):667-74. PubMed ID: 16484618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potent modulation of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels by the type II pyrethroid deltamethrin.
    Tabarean IV; Narahashi T
    J Pharmacol Exp Ther; 1998 Mar; 284(3):958-65. PubMed ID: 9495855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.