BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 10839477)

  • 1. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes.
    Nakagawa Y; Tayama S
    Arch Toxicol; 2000 Apr; 74(2):99-105. PubMed ID: 10839477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of p-hydroxybenzoate ester-induced mitochondrial dysfunction and cytotoxicity in isolated rat hepatocytes.
    Nakagawa Y; Moldéus P
    Biochem Pharmacol; 1998 Jun; 55(11):1907-14. PubMed ID: 9714309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorpropham induces mitochondrial dysfunction in rat hepatocytes.
    Nakagawa Y; Nakajima K; Suzuki T
    Toxicology; 2004 Aug; 200(2-3):123-33. PubMed ID: 15212809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of mitochondrial dysfunction and cytotoxicity induced by tropolones in isolated rat hepatocytes.
    Nakagawa Y; Tayama K
    Chem Biol Interact; 1998 Nov; 116(1-2):45-60. PubMed ID: 9877200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of bisphenol A in isolated rat hepatocytes and oestrogenic activity of a hydroxylated metabolite in MCF-7 human breast cancer cells.
    Nakagawa Y; Suzuki T
    Xenobiotica; 2001 Mar; 31(3):113-23. PubMed ID: 11465389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism and cytotoxicity of propyl gallate in isolated rat hepatocytes: effects of a thiol reductant and an esterase inhibitor.
    Nakagawa Y; Nakajima K; Tayama S; Moldéus P
    Mol Pharmacol; 1995 May; 47(5):1021-7. PubMed ID: 7746268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of chlorpropham (CIPC) in isolated rat hepatocytes and xenoestrogenic activity of CIPC and its metabolites by in vitro assays.
    Nakagawa Y; Nakajima K; Suzuki T
    Xenobiotica; 2004 Mar; 34(3):257-72. PubMed ID: 15204698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between mitochondrial dysfunction and toxicity of propyl gallate in isolated rat hepatocytes.
    Nakagawa Y; Moldéus P; Moore GA
    Toxicology; 1996 Dec; 114(2):135-45. PubMed ID: 8947612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes.
    Nakagawa Y; Suzuki T; Ishii H; Ogata A
    Xenobiotica; 2007 Jul; 37(7):693-708. PubMed ID: 17620216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of 2-hydroxy-4-methoxybenzophenone in isolated rat hepatocytes and xenoestrogenic effects of its metabolites on MCF-7 human breast cancer cells.
    Nakagawa Y; Suzuki T
    Chem Biol Interact; 2002 Feb; 139(2):115-28. PubMed ID: 11823001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. II. Triethylphosphine gold chloride-induced alterations in mitochondrial function.
    Rush GF; Smith PF; Hoke GD; Alberts DW; Snyder RM; Mirabelli CK
    Toxicol Appl Pharmacol; 1987 Sep; 90(3):391-400. PubMed ID: 3660409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Nitrosofenfluramine induces cytotoxicity via mitochondrial dysfunction and oxidative stress in isolated rat hepatocytes.
    Nakagawa Y; Suzuki T; Kamimura H; Nagai F
    Arch Toxicol; 2005 Jun; 79(6):312-20. PubMed ID: 15696257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity of propyl gallate and related compounds in rat hepatocytes.
    Nakagawa Y; Tayama S
    Arch Toxicol; 1995; 69(3):204-8. PubMed ID: 7717878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-generating glycolytic substrates prevent N-nitrosofenfluramine-induced cytotoxicity in isolated rat hepatocytes.
    Nakagawa Y; Tayama S; Ogata A; Suzuki T; Ishii H
    Chem Biol Interact; 2006 Dec; 164(1-2):93-101. PubMed ID: 17056023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes.
    Nakagawa Y; Suzuki T; Tayama S; Ishii H; Ogata A
    Arch Toxicol; 2009 Jan; 83(1):69-80. PubMed ID: 18553070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early-life exposure to bisphenol a induces liver injury in rats involvement of mitochondria-mediated apoptosis.
    Xia W; Jiang Y; Li Y; Wan Y; Liu J; Ma Y; Mao Z; Chang H; Li G; Xu B; Chen X; Xu S
    PLoS One; 2014; 9(2):e90443. PubMed ID: 24587367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minor structural modifications of bisphenol A strongly affect physiological responses of HepG2 cells.
    Padberg F; Tarnow P; Luch A; Zellmer S
    Arch Toxicol; 2019 Jun; 93(6):1529-1541. PubMed ID: 31055635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol A: implications for extrapolation to humans.
    Elsby R; Maggs JL; Ashby J; Park BK
    J Pharmacol Exp Ther; 2001 Apr; 297(1):103-13. PubMed ID: 11259533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity.
    Suzuki T; Nakagawa Y; Takano I; Yaguchi K; Yasuda K
    Environ Sci Technol; 2004 Apr; 38(8):2389-96. PubMed ID: 15116845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potent estrogenic metabolites of bisphenol A and bisphenol B formed by rat liver S9 fraction: their structures and estrogenic potency.
    Yoshihara S; Mizutare T; Makishima M; Suzuki N; Fujimoto N; Igarashi K; Ohta S
    Toxicol Sci; 2004 Mar; 78(1):50-9. PubMed ID: 14691209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.