These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 10839989)
1. Contrasting effects of N5-substituted tetrahydrobiopterin derivatives on phenylalanine hydroxylase, dihydropteridine reductase and nitric oxide synthase. Werner ER; Habisch HJ; Gorren AC; Schmidt K; Canevari L; Werner-Felmayer G; Mayer B Biochem J; 2000 Jun; 348 Pt 3(Pt 3):579-83. PubMed ID: 10839989 [TBL] [Abstract][Full Text] [Related]
2. Identification of the 4-amino analogue of tetrahydrobiopterin as a dihydropteridine reductase inhibitor and a potent pteridine antagonist of rat neuronal nitric oxide synthase. Werner ER; Pitters E; Schmidt K; Wachter H; Werner-Felmayer G; Mayer B Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):193-6. PubMed ID: 8947486 [TBL] [Abstract][Full Text] [Related]
3. Physarum polycephalum expresses a dihydropteridine reductase with selectivity for pterin substrates with a 6-(1', 2'-dihydroxypropyl) substitution. Wild C; Golderer G; Gröbner P; Werner-Felmayer G; Werner ER Biol Chem; 2003 Jul; 384(7):1057-62. PubMed ID: 12956422 [TBL] [Abstract][Full Text] [Related]
5. Recombinant human phenylalanine hydroxylase: novel regulatory and structural properties. Kowlessur D; Citron BA; Kaufman S Arch Biochem Biophys; 1996 Sep; 333(1):85-95. PubMed ID: 8806757 [TBL] [Abstract][Full Text] [Related]
6. Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase. Noguchi T; Sagami I; Daff S; Shimizu T Biochem Biophys Res Commun; 2001 Apr; 282(5):1092-7. PubMed ID: 11302726 [TBL] [Abstract][Full Text] [Related]
7. Tetrahydrobiopterin binding to aromatic amino acid hydroxylases. Ligand recognition and specificity. Teigen K; Dao KK; McKinney JA; Gorren AC; Mayer B; Frøystein NA; Haavik J; Martínez A J Med Chem; 2004 Nov; 47(24):5962-71. PubMed ID: 15537351 [TBL] [Abstract][Full Text] [Related]
8. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894 [TBL] [Abstract][Full Text] [Related]
9. [Hyperphenylalaninaemia with normal phenylalanine-hydroxylase activity and a deficiency of tetrahydrobiopterin and dihydropteridine reductase]. Rey F; Harpey JP; Leeming RJ; Blair JA; Aicardi J; Rey J Arch Fr Pediatr; 1977; 34(7 Suppl):CIX-CXX. PubMed ID: 931522 [TBL] [Abstract][Full Text] [Related]
10. Tetrahydrobiopterin: biochemistry and pathophysiology. Werner ER; Blau N; Thöny B Biochem J; 2011 Sep; 438(3):397-414. PubMed ID: 21867484 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the kinetics of CO binding to neuronal nitric oxide synthase by flash photolysis: dual effects of substrates, inhibitors, and tetrahydrobiopterin. Bengea S; Araki Y; Ito O; Igarashi J; Sagami I; Shimizu T J Inorg Biochem; 2004 Jul; 98(7):1210-6. PubMed ID: 15219987 [TBL] [Abstract][Full Text] [Related]
12. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase. Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583 [TBL] [Abstract][Full Text] [Related]
13. The protective effect of tetrahydrobiopterin on the nitric oxide-mediated inhibition of purified nitric oxide synthase. Hyun J; Komori Y; Chaudhuri G; Ignarro LJ; Fukuto JM Biochem Biophys Res Commun; 1995 Jan; 206(1):380-6. PubMed ID: 7529500 [TBL] [Abstract][Full Text] [Related]
14. Modulation of nitric-oxide synthase by nicotine. Tonnessen BH; Severson SR; Hurt RD; Miller VM J Pharmacol Exp Ther; 2000 Nov; 295(2):601-6. PubMed ID: 11046094 [TBL] [Abstract][Full Text] [Related]
15. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase. Berka V; Yeh HC; Gao D; Kiran F; Tsai AL Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407 [TBL] [Abstract][Full Text] [Related]
16. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Stuehr DJ; Wei CC; Wang Z; Hille R Dalton Trans; 2005 Nov; (21):3427-35. PubMed ID: 16234921 [TBL] [Abstract][Full Text] [Related]
17. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode. Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076 [TBL] [Abstract][Full Text] [Related]
18. Tetrahydrobiopterin compounds prolong allograft survival independently of their effect on nitric oxide synthase activity. Brandacher G; Maglione M; Schneeberger S; Obrist P; Thoeni G; Wrulich OA; Werner-Felmayer G; Margreiter R; Werner ER Transplantation; 2006 Feb; 81(4):583-9. PubMed ID: 16495807 [TBL] [Abstract][Full Text] [Related]
19. The comparative interaction of quinonoid (6R)-dihydrobiopterin and an alternative dihydropterin substrate with wild-type and mutant rat dihydropteridine reductases. Kiefer PM; Grimshaw CE; Whiteley JM Biochemistry; 1997 Aug; 36(31):9438-45. PubMed ID: 9235988 [TBL] [Abstract][Full Text] [Related]
20. Chiral recognition at the heme active site of nitric oxide synthase is markedly enhanced by L-arginine and 5,6,7,8-tetrahydrobiopterin. Nakano K; Sagami I; Daff S; Shimizu T Biochem Biophys Res Commun; 1998 Jul; 248(3):767-72. PubMed ID: 9704002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]