BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1280 related articles for article (PubMed ID: 10839993)

  • 1. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.
    Owen MR; Doran E; Halestrap AP
    Biochem J; 2000 Jun; 348 Pt 3(Pt 3):607-14. PubMed ID: 10839993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metformin primarily decreases plasma glucose not by gluconeogenesis suppression but by activating glucose utilization in a non-obese type 2 diabetes Goto-Kakizaki rats.
    Yoshida T; Okuno A; Tanaka J; Takahashi K; Nakashima R; Kanda S; Ogawa J; Hagisawa Y; Fujiwara T
    Eur J Pharmacol; 2009 Nov; 623(1-3):141-7. PubMed ID: 19765581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Baicalin reduces mitochondrial damage in streptozotocin-induced diabetic Wistar rats.
    Waisundara VY; Hsu A; Tan BK; Huang D
    Diabetes Metab Res Rev; 2009 Oct; 25(7):671-7. PubMed ID: 19688721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of metformin and vanadium on leptin secretion from cultured rat adipocytes.
    Mueller WM; Stanhope KL; Gregoire F; Evans JL; Havel PJ
    Obes Res; 2000 Oct; 8(7):530-9. PubMed ID: 11068959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro.
    Dykens JA; Jamieson J; Marroquin L; Nadanaciva S; Billis PA; Will Y
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):203-10. PubMed ID: 18817800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP.
    Kim YD; Park KG; Lee YS; Park YY; Kim DK; Nedumaran B; Jang WG; Cho WJ; Ha J; Lee IK; Lee CH; Choi HS
    Diabetes; 2008 Feb; 57(2):306-14. PubMed ID: 17909097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metformin potentiates the antigluconeogenic action of insulin.
    Wollen N; Bailey CJ
    Diabete Metab; 1988; 14(2):88-91. PubMed ID: 3042491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of mitochondrial function in isolated rate liver mitochondria by azole antifungals.
    Rodriguez RJ; Acosta D
    J Biochem Toxicol; 1996; 11(3):127-31. PubMed ID: 9029271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial toxicity and antioxidant activity of a prenylated flavonoid isolated from Dalea elegans.
    Elingold I; Isollabella MP; Casanova MB; Celentano AM; Pérez C; Cabrera JL; Diez RA; Dubin M
    Chem Biol Interact; 2008 Feb; 171(3):294-305. PubMed ID: 18078919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of (13)C-filtered (1)H NMR to evaluate drug action on gluconeogenesis and glycogenolysis simultaneously in isolated rat hepatocytes.
    Hansen SH; McCormack JG
    NMR Biomed; 2002 Aug; 15(5):313-9. PubMed ID: 12203222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of reactive oxygen species by endothelial and smooth muscle cells: influence of hyperglycemia and metformin.
    Bellin C; de Wiza DH; Wiernsperger NF; Rösen P
    Horm Metab Res; 2006 Nov; 38(11):732-9. PubMed ID: 17111300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes.
    Igoudjil A; Massart J; Begriche K; Descatoire V; Robin MA; Fromenty B
    Toxicol In Vitro; 2008 Jun; 22(4):887-98. PubMed ID: 18299183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The action of n-propyl gallate on gluconeogenesis and oxygen uptake in the rat liver.
    Eler GJ; Peralta RM; Bracht A
    Chem Biol Interact; 2009 Oct; 181(3):390-9. PubMed ID: 19616523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition.
    Piel S; Ehinger JK; Elmér E; Hansson MJ
    Acta Physiol (Oxf); 2015 Jan; 213(1):171-80. PubMed ID: 24801139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antidiabetic effects of cysteinyl metformin, a newly synthesized agent, in alloxan- and streptozocin-induced diabetic rats.
    Liu Z; Li J; Zeng Z; Liu M; Wang M
    Chem Biol Interact; 2008 May; 173(1):68-75. PubMed ID: 18377884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glucose-6-phosphatase gene expression by insulin and metformin.
    Mues C; Zhou J; Manolopoulos KN; Korsten P; Schmoll D; Klotz LO; Bornstein SR; Klein HH; Barthel A
    Horm Metab Res; 2009 Oct; 41(10):730-5. PubMed ID: 19579180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flunarizine and cinnarizine inhibit mitochondrial complexes I and II: possible implication for parkinsonism.
    Veitch K; Hue L
    Mol Pharmacol; 1994 Jan; 45(1):158-63. PubMed ID: 8302275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis.
    Chu CA; Wiernsperger N; Muscato N; Knauf M; Neal DW; Cherrington AD
    Metabolism; 2000 Dec; 49(12):1619-26. PubMed ID: 11145127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.