These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10840034)

  • 21. Regulated and constitutive activity by CDC25Mm (GRF), a Ras-specific exchange factor.
    Cen H; Papageorge AG; Vass WC; Zhang KE; Lowy DR
    Mol Cell Biol; 1993 Dec; 13(12):7718-24. PubMed ID: 8246988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor.
    Yang J; Zhang Z; Roe SM; Marshall CJ; Barford D
    Science; 2009 Sep; 325(5946):1398-402. PubMed ID: 19745154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42.
    Kintscher C; Groemping Y
    J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF.
    Farnsworth CL; Freshney NW; Rosen LB; Ghosh A; Greenberg ME; Feig LA
    Nature; 1995 Aug; 376(6540):524-7. PubMed ID: 7637786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domain contributions to signaling specificity differences between Ras-guanine nucleotide releasing factor (Ras-GRF) 1 and Ras-GRF2.
    Jin SX; Bartolome C; Arai JA; Hoffman L; Uzturk BG; Kumar-Singh R; Waxham MN; Feig LA
    J Biol Chem; 2014 Jun; 289(23):16551-64. PubMed ID: 24755227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Function of the Rho family GTPases in Ras-stimulated Raf activation.
    Li W; Chong H; Guan KL
    J Biol Chem; 2001 Sep; 276(37):34728-37. PubMed ID: 11457831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomerization of DH domain is essential for Dbl-induced transformation.
    Zhu K; Debreceni B; Bi F; Zheng Y
    Mol Cell Biol; 2001 Jan; 21(2):425-37. PubMed ID: 11134331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release.
    Leonardsen L; DeClue JE; Lybaek H; Lowy DR; Willumsen BM
    Oncogene; 1996 Nov; 13(10):2177-87. PubMed ID: 8950985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases.
    Rudolph MG; Weise C; Mirold S; Hillenbrand B; Bader B; Wittinghofer A; Hardt WD
    J Biol Chem; 1999 Oct; 274(43):30501-9. PubMed ID: 10521431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cdc42-dependent mediation of UV-induced p38 activation by G protein betagamma subunits.
    Seo M; Cho CH; Lee YI; Shin EY; Park D; Bae CD; Lee JW; Lee ES; Juhnn YS
    J Biol Chem; 2004 Apr; 279(17):17366-75. PubMed ID: 14970210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways.
    Fan WT; Koch CA; de Hoog CL; Fam NP; Moran MF
    Curr Biol; 1998 Jul 30-Aug 13; 8(16):935-8. PubMed ID: 9707409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1.
    Chou MM; Blenis J
    Cell; 1996 May; 85(4):573-83. PubMed ID: 8653792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of G1 progression, JNK mitogen-activated protein kinase, and actin filament assembly by the exchange factor FGD1.
    Nagata K; Driessens M; Lamarche N; Gorski JL; Hall A
    J Biol Chem; 1998 Jun; 273(25):15453-7. PubMed ID: 9624130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors.
    Quilliam LA; Hisaka MM; Zhong S; Lowry A; Mosteller RD; Han J; Drugan JK; Broek D; Campbell SL; Der CJ
    J Biol Chem; 1996 May; 271(19):11076-82. PubMed ID: 8626650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux.
    Nofer JR; Feuerborn R; Levkau B; Sokoll A; Seedorf U; Assmann G
    J Biol Chem; 2003 Dec; 278(52):53055-62. PubMed ID: 14563854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav.
    Crespo P; Bustelo XR; Aaronson DS; Coso OA; Lopez-Barahona M; Barbacid M; Gutkind JS
    Oncogene; 1996 Aug; 13(3):455-60. PubMed ID: 8760286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21.
    Shou C; Farnsworth CL; Neel BG; Feig LA
    Nature; 1992 Jul; 358(6384):351-4. PubMed ID: 1379346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antiapoptotic Cdc42 mutants are potent activators of cellular transformation.
    Tu SS; Wu WJ; Yang W; Nolbant P; Hahn K; Cerione RA
    Biochemistry; 2002 Oct; 41(41):12350-8. PubMed ID: 12369824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoinhibition mechanism of proto-Dbl.
    Bi F; Debreceni B; Zhu K; Salani B; Eva A; Zheng Y
    Mol Cell Biol; 2001 Mar; 21(5):1463-74. PubMed ID: 11238883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. p38 MAPK-mediated activation of NF-kappaB by the RhoGEF domain of Bcr.
    Korus M; Mahon GM; Cheng L; Whitehead IP
    Oncogene; 2002 Jul; 21(30):4601-12. PubMed ID: 12096337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.