These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 10840145)
1. Withdrawal-associated changes in peripheral nitrogen oxides and striatal cyclic GMP after chronic haloperidol treatment. Harvey BH; Bester A Behav Brain Res; 2000 Jun; 111(1-2):203-11. PubMed ID: 10840145 [TBL] [Abstract][Full Text] [Related]
2. Early suppression of striatal cyclic GMP may predetermine the induction and severity of chronic haloperidol-induced vacous chewing movements. Bester AM; Harvey BH Metab Brain Dis; 2000 Dec; 15(4):275-85. PubMed ID: 11383552 [TBL] [Abstract][Full Text] [Related]
3. Haloperidol-induced dyskinesia is associated with striatal NO synthase suppression: reversal with olanzapine. Nel A; Harvey BH Behav Pharmacol; 2003 May; 14(3):251-5. PubMed ID: 12799528 [TBL] [Abstract][Full Text] [Related]
4. Sub-chronic treatment with classical but not atypical antipsychotics produces morphological changes in rat nigro-striatal dopaminergic neurons directly related to "early onset" vacuous chewing. Marchese G; Casu MA; Bartholini F; Ruiu S; Saba P; Gessa GL; Pani L Eur J Neurosci; 2002 Apr; 15(7):1187-96. PubMed ID: 11982629 [TBL] [Abstract][Full Text] [Related]
5. Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol. Egan MF; Hurd Y; Ferguson J; Bachus SE; Hamid EH; Hyde TM Psychopharmacology (Berl); 1996 Oct; 127(4):337-45. PubMed ID: 8923569 [TBL] [Abstract][Full Text] [Related]
6. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862 [TBL] [Abstract][Full Text] [Related]
7. Excitatory mechanisms in neuroleptic-induced vacuous chewing movements (VCMs): possible involvement of calcium and nitric oxide. Naidu PS; Kulkarni SK Behav Pharmacol; 2001 Jun; 12(3):209-16. PubMed ID: 11485057 [TBL] [Abstract][Full Text] [Related]
8. Role of aging and striatal nitric oxide synthase activity in an animal model of tardive dyskinesia. Harvey BH; Nel A Brain Res Bull; 2003 Aug; 61(4):407-16. PubMed ID: 12909284 [TBL] [Abstract][Full Text] [Related]
9. Extract of Ginkgo biloba is equivalent to vitamin E in attenuating and preventing vacuous chewing movements in a rat model of tardive dyskinesia. An HM; Tan YL; Shi J; Wang ZR; Li J; Wang YC; Kosten TR; Zhou DF; Yang FD; Zhang XY Behav Pharmacol; 2013 Oct; 24(7):610-6. PubMed ID: 23994817 [TBL] [Abstract][Full Text] [Related]
10. Lipoic acid and haloperidol-induced vacuous chewing movements: Implications for prophylactic antioxidant use in tardive dyskinesia. Lister J; Andreazza AC; Navaid B; Wilson VS; Teo C; Nesarajah Y; Wilson AA; Nobrega JN; Fletcher PJ; Remington G Prog Neuropsychopharmacol Biol Psychiatry; 2017 Jan; 72():23-29. PubMed ID: 27565433 [TBL] [Abstract][Full Text] [Related]
11. Relationship of orofacial movements to behavioural repertoire as assessed topographically over the course of 6-month haloperidol treatment followed by 4-month withdrawal. De Souza IE; Dawson NM; Clifford JJ; Waddington JL; Meredith GE Psychopharmacology (Berl); 2003 Aug; 169(1):28-34. PubMed ID: 12830366 [TBL] [Abstract][Full Text] [Related]
12. Alpha-phenyl-N-tert-butylnitrone prevents oxidative stress in a haloperidol-induced animal model of tardive dyskinesia: investigating the behavioural and biochemical changes. Daya RP; Tan ML; Sookram CD; Skoblenick K; Mishra RK Brain Res; 2011 Sep; 1412():28-36. PubMed ID: 21816389 [TBL] [Abstract][Full Text] [Related]
13. Correlation of vacuous chewing movements with morphological changes in rats following 1-year treatment with haloperidol. Meshul CK; Andreassen OA; Allen C; Jørgensen HA Psychopharmacology (Berl); 1996 Jun; 125(3):238-47. PubMed ID: 8815959 [TBL] [Abstract][Full Text] [Related]
14. Oral Dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid. Andreassen OA; Ferrante RJ; Beal MF; Jørgensen HA Neuroscience; 1998 Dec; 87(3):639-48. PubMed ID: 9758230 [TBL] [Abstract][Full Text] [Related]
15. Co-administration of nitric oxide (NO) donors prevents haloperidol-induced orofacial dyskinesia, oxidative damage and change in striatal dopamine levels. Bishnoi M; Chopra K; Kulkarni SK Pharmacol Biochem Behav; 2009 Jan; 91(3):423-9. PubMed ID: 18789960 [TBL] [Abstract][Full Text] [Related]
16. The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats. Turrone P; Remington G; Kapur S; Nobrega JN Psychopharmacology (Berl); 2003 Jan; 165(2):166-71. PubMed ID: 12417967 [TBL] [Abstract][Full Text] [Related]
17. Emergence of oral and locomotor activity in chronic haloperidol-treated rats following cortical N-methyl-D-aspartate stimulation. Grimm JW; Kruzich PJ; See RE Pharmacol Biochem Behav; 1998 May; 60(1):167-73. PubMed ID: 9610939 [TBL] [Abstract][Full Text] [Related]
18. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rats: a study of unlabeled and enkephalin-labeled striatal terminals. Roberts RC; Lapidus B J Neural Transm (Vienna); 2003 Sep; 110(9):961-75. PubMed ID: 12938022 [TBL] [Abstract][Full Text] [Related]
19. Oral administration of haloperidol at clinically recommended doses elicits smaller parkinsonian effects but more tardive dyskinesia in rats. Shireen E; Naeem S; Inam QU; Haleem DJ Pak J Pharm Sci; 2013 Mar; 26(2):271-6. PubMed ID: 23455196 [TBL] [Abstract][Full Text] [Related]
20. Oral dyskinesias and morphological changes in rat striatum during long-term haloperidol administration. Andreassen OA; Meshul CK; Moore C; Jørgensen HA Psychopharmacology (Berl); 2001 Aug; 157(1):11-9. PubMed ID: 11512038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]