These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10841404)

  • 1. A systematic evaluation of air cavity dose perturbation in megavoltage x-ray beams.
    Li XA; Yu C; Holmes T
    Med Phys; 2000 May; 27(5):1011-7. PubMed ID: 10841404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.
    Araki F; Ohno T
    Med Phys; 2014 Dec; 41(12):122102. PubMed ID: 25471975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam.
    Ding GX
    Med Phys; 2002 Nov; 29(11):2459-63. PubMed ID: 12462709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the nasopharyngeal air cavity on x-ray interface doses.
    Kan WK; Wu PM; Leung HT; Lo TC; Chung CW; Kwong DL; Sham ST
    Phys Med Biol; 1998 Mar; 43(3):529-37. PubMed ID: 9533132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo study on internal wedges using BEAM.
    van der Zee W; Welleweerd J
    Med Phys; 2002 May; 29(5):876-85. PubMed ID: 12033584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformal photon-beam therapy with transverse magnetic fields: a Monte Carlo study.
    Li XA; Reiffel L; Chu J; Naqvi S
    Med Phys; 2001 Feb; 28(2):127-33. PubMed ID: 11243334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations of the differential beam hardening effect of a flattening filter on a therapeutic x-ray beam.
    Lee PC
    Med Phys; 1997 Sep; 24(9):1485-9. PubMed ID: 9304577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of the dose kernel in high-energy x-ray beams.
    Ceberg CP; Bjärngard BE; Zhu TC
    Med Phys; 1996 Apr; 23(4):505-11. PubMed ID: 9157261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the effectiveness of a longitudinal magnetic field in reducing underdosing of the regions around upper respiratory cavities irradiated with photon beams--a Monte Carlo study.
    Wadi-Ramahi SJ; Naqvi SA; Chu JC
    Med Phys; 2001 Aug; 28(8):1711-7. PubMed ID: 11548941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A patient-specific Monte Carlo dose-calculation method for photon beams.
    Wang L; Chui CS; Lovelock M
    Med Phys; 1998 Jun; 25(6):867-78. PubMed ID: 9650174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-dependent beam-modifier physics in Monte Carlo photon dose calculations.
    Schach von Wittenau AE; Bergstrom PM; Cox LJ
    Med Phys; 2000 May; 27(5):935-47. PubMed ID: 10841396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean energy, energy-range relationships and depth-scaling factors for clinical electron beams.
    Ding GX; Rogers DW
    Med Phys; 1996 Mar; 23(3):361-76. PubMed ID: 8815379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O; Li XA
    Med Phys; 2002 May; 29(5):835-47. PubMed ID: 12033580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac.
    Sheikh-Bagheri D; Rogers DW; Ross CK; Seuntjens JP
    Med Phys; 2000 Oct; 27(10):2256-66. PubMed ID: 11099192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy.
    Disher B; Hajdok G; Gaede S; Battista JJ
    Phys Med Biol; 2012 Mar; 57(6):1543-59. PubMed ID: 22391122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo study of fluence perturbation effects on cavity dose response in clinical proton beams.
    Palmans H; Verhaegen F
    Phys Med Biol; 1998 Jan; 43(1):65-89. PubMed ID: 9483624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of dose near a nonradioactive gold seed.
    Chow JC; Grigorov GN
    Med Phys; 2006 Dec; 33(12):4614-21. PubMed ID: 17278814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: a comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations.
    Martens C; Reynaert N; De Wagter C; Nilsson P; Coghe M; Palmans H; Thierens H; De Neve W
    Med Phys; 2002 Jul; 29(7):1528-35. PubMed ID: 12148735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the photon beam treatment planning data for a scanning beam machine.
    Lovelock DM; Chui CS; Kutcher GJ; Mohan R
    Med Phys; 1994 Dec; 21(12):1969-77. PubMed ID: 7700205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.