These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 10841417)
1. What is the best proton energy for accelerator-based BNCT using the 7Li(p,n)7Be reaction? Allen DA; Beynon TD Med Phys; 2000 May; 27(5):1113-8. PubMed ID: 10841417 [TBL] [Abstract][Full Text] [Related]
3. A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy. Lee CL; Zhou XL; Kudchadker RJ; Harmon F; Harker YD Med Phys; 2000 Jan; 27(1):192-202. PubMed ID: 10659757 [TBL] [Abstract][Full Text] [Related]
4. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT. Kobayashi T; Bengua G; Tanaka K; Nakagawa Y Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111 [TBL] [Abstract][Full Text] [Related]
5. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV. Yu W; Yue G; Han X; Chen J; Tian B Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of useful neutron flux for accelerator boron neutron capture therapy using the 7Li(p,n) reaction. Zimin S; Allen BJ Australas Phys Eng Sci Med; 1998 Dec; 21(4):193-9. PubMed ID: 10050350 [TBL] [Abstract][Full Text] [Related]
7. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target. Yue G; Chen J; Song R Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018 [TBL] [Abstract][Full Text] [Related]
8. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy. Gierga DP; Yanch JC; Shefer RE Med Phys; 2000 Jan; 27(1):203-14. PubMed ID: 10659758 [TBL] [Abstract][Full Text] [Related]
9. An optimized neutron-beam shaping assembly for accelerator-based BNCT. Burlon AA; Kreiner AJ; Valda AA; Minsky DM Appl Radiat Isot; 2004 Nov; 61(5):811-5. PubMed ID: 15308149 [TBL] [Abstract][Full Text] [Related]
10. Irradiation characteristics of BNCT using near-threshold 7Li(p, n)7Be direct neutrons: application to intra-operative BNCT for malignant brain tumours. Tanaka K; Kobayashi T; Sakurai Y; Nakagawa Y; Ishikawa M; Hoshi M Phys Med Biol; 2002 Aug; 47(16):3011-32. PubMed ID: 12222863 [TBL] [Abstract][Full Text] [Related]
11. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator. Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of BDE dependent on 10B concentration for accelerator-based BNCT using near-threshold 7Li(p,n)7Be direct neutrons. Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M Appl Radiat Isot; 2004 Nov; 61(5):875-9. PubMed ID: 15308161 [TBL] [Abstract][Full Text] [Related]
13. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li(p,n) reaction near threshold. Zimin S; Allen BJ Phys Med Biol; 2000 Jan; 45(1):59-67. PubMed ID: 10661583 [TBL] [Abstract][Full Text] [Related]
14. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy. Allen DA; Beynon TD; Green S Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400 [TBL] [Abstract][Full Text] [Related]
15. A design study for an accelerator-based epithermal neutron beam for BNCT. Allen DA; Beynon TD Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009 [TBL] [Abstract][Full Text] [Related]
16. Beam shaping assembly design of Zaidi L; Belgaid M; Taskaev S; Khelifi R Appl Radiat Isot; 2018 Sep; 139():316-324. PubMed ID: 29890472 [TBL] [Abstract][Full Text] [Related]
17. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom. Lee DJ; Han CY; Park SH; Kim JK Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726 [TBL] [Abstract][Full Text] [Related]
18. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT. Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627 [TBL] [Abstract][Full Text] [Related]
19. In-phantom neutron fluence measurements in the orthogonal Birmingham boron neutron capture therapy beam. Tattam DA; Allen DA; Beynon TD; Constantine G; Green S; Scott MC; Weaver DR Med Phys; 1998 Oct; 25(10):1964-6. PubMed ID: 9800704 [TBL] [Abstract][Full Text] [Related]